
Public - Can be shared and seen by anyone outside or inside Fieldbox.

Container inspection automation:      
a proof of concept

APIA conference, Strasbourg, July, 6th, 2023

Speaker: Sonia Tabti, PhD

Co-authors: F. Vallée, D. Poon, M. Elion, Y. Alouini,

Team: C. Collignon, P. Oreistein, P. Chin, R. Yang, A. Cherifi, 
A. Coutant, J. Sauer



Public - Can be shared and seen by anyone outside or inside Fieldbox.

Container inspection: a major logistic challenge

   11        container depot operators in Singapore

~ 20      container depot yards

3 to 5    surveyors at each yard

~  500    containers inspected daily

~ 30%   of the containers have some form of defects

Estimated time taken to inspect each container:

5 to 10 mins: no defects, 

20 mins: minor defects, 

40 mins: serious defects. 

The context in numbers at Singapore

● Defects’ pictures taken with a tablet
● Point of view: really close to the defect
● Multiple pictures taken per defect
● Repair recommendations proposed
● Defects are submitted to an ISO norm

Inspection workflow
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Objectives: towards container inspection automation
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● Automatic capture of images inside and outside of the container
● Detection and classification of defects
● Recommendations of repairs
● Identification of the container ID

Summarized client’s endgame : container inspection automation

● Project framing
● Cold data exploration
● Hardware install
● Data collection
● Build model(s) to detect prioritized defects
● Test this model(s) in realistic conditions

POC scope (from Nov 2021 to June 2022)
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State of the art in container inspection
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X-ray inspection Laser-based Image-based

Commercial 
products

Research

For most papers:
● Models work on pictures taken with close point of view 

(adapted for mobile/tablet inspection, not full automation)
● Focus on one or most recurrent defects
● Many use deep learning classification 

→ But localization is key !
● Focus on exterior inspection (interior is important too)

Some references: [Baharmi et al., 2022], [Zixin Wang et al., 2021], 
[Klöver et al., 2020]

→ No AI → Found a 2014 doc, no 
recent one

→ Most references found in 
inspections for contreband

Example: [Abdolshah et al., 2017]

Eg. of reference with neutron and 
gamma-ray systems: [Marques et 
al., 2023]

→ Focus on OCR and 
exterior damages
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Modeling

Object detection: Yolo

Data splitting and details         

Results and analysis                                

Project framing

Historic data exploration            
Scoping                                 

Hardware selection              

Our container inspection journey

01

02

03

04
Data preparation

Image extraction            

Labeling        

Analysis and rescoping   

Conclusion

REX            

Perspectives            
                          



Public - Can be shared and seen by anyone outside or inside Fieldbox.

Project framing
● Cold data exploration
● Scope definition : defects shortlist
● Hardware selection 01
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Cold data exploration: high imbalance and Covid impact

● Goal: define a shortlist of defect types to 
focus on for this POC

● Historic data from 2019 and 2020
○ Composed of: defects pictures, Jsons files
○ 116 defect types explored in total
○ Total volume: 186 477 images / 96 GB (compressed) 

→ Big data

● 24 types of defects were selected

Computation of the defects distribution for each location
● Separate 2019 and 2020 to avoid the Covid bias
● Imbalanced defects distribution. 
● Defects distribution can vary from one year to another

Location Door Exterior Interior Marking Washing

Number of defect types 49 27 20 18 2

Number of images 52164 49045 66680 7176 11412

Exterior defects distribution (blue: 2019, orange: 2020) Interior defects distribution (blue: 2019, orange: 2020) 7
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Hardware: camera array for exterior inspection

● Deciding the appropriate hardware to collect data was not straightforward
○ We settled for a set of 2K resolution CCTVs 

● Deciding where and how to install the cameras in order to optimize defects capture 
was not straightforward either

● Data collection:
○ We acquired a NAS (Network Attached Storage) to record videos and access them remotely
○ Automated sync procedures with a cloud storage is a good way to go
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Hardware: rover for interior inspection
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● We settled for a rover for interior inspection
○ With a 1080p camera

● Current workflow:
○ An operator opens the container’s door
○ Puts the rover inside
○ Drives it according to a path we recommended

● Towards an automated workflow for a next project phase:
○ Sensors on the rover could have been a good option
○ But: they are not adapted to such a metallic structure
○ TODO: Hardcoding the rover’s path thanks to the rovers’s SDK 

https://docs.google.com/file/d/1ZgUsLveWMkaVniizgRCJTYh9wMiw5giz/preview
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● Labeling
● Analysis of collected data and rescoping

Data preparation 02
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Data labeling with Label Studio
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Data collection: analysis and rescoping to 5 interior defects
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● One month of data collection
● Covid impact: not enough container traffic
● Not enough defects observed 
● Highly imbalanced defects’ distribution
● More than 100 defects collected for 5 types only
● All interior defects

→ Rescoping to the 5 most occurring defects (interior 
and washing)

Interior and washing defects distribution in 2019, 2020, Feb 2022 (data collection)
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● Object detection with Yolov5
● Results and analysis

Modeling 03
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Modeling: object detection with Yolov5
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● Modeling strategy: object detection
○ Locating the defect is important

● Model selected: Yolov5, size M
○ Good performance and fast inference
○ Good compromise on training time

● For a given image, Yolo inference works as follows:
○ splits the image into a grid 
○ locates and classifies objects of interest in each cell

   ⇒ Regression problem: generation of a set of bounding boxes, object 
confidence and class probabilities for each cell

● For training, a transfer-learning approach was followed:
○ Using a model pretrained on the COCO dataset

Image courtesy from the first Yolo paper
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Modeling: data splitting 
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● Dataset was cautiously split into subsets so as to avoid introducing 
unwanted bias

○ 80% train (~ 1100 imgs)   -   20% test (~ 260 imgs)
■ the training (sub)set is used for model training
■ the test (sub)set is used for model evaluation

○ Images from the same video are not split across different 
subsets

○ The original distribution of defects is preserved in all 
subsets  (used: iterative stratified split for multi-label cases)

● The percentage of background images (i.e the no_defects class) 
was lower than 10%

● Data augmentation operations have been applied
○ vertical and horizontal flip
○ alteration of contrast and colors
○ image translation

     ⇒ ~ 500 images generated with data augmentation

Defects distribution in each data subset

https://github.com/trent-b/iterative-stratification
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Results and analysis: the impact of data volume

16

● Model training has converged (using rover data)
● Preliminary results (obtained on test images) :

○ 70% of labeled FWA_DY defects have been detected 
○ 25% of labeled Oil Stains have been detected 
○ About 20% of labeled  LSR_DB defects have been detected

● Preliminary qualitative results on test videos are promising:
○ 5/6  broken floor defects were detected !

● Even though the limitations are clear:
○ Many detected defects do not correspond to any labeled 

defect
○ The dataset is too small, hence performances improvable

→ Correlation between performance and number of image samples per class

Confusion matrix computed using the test set
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Demo: test video 1
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https://docs.google.com/file/d/1y0yioeOlarOY0RCgH4Cwf4kxcRjhq7aE/preview
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Demo: test video 2

18

https://docs.google.com/file/d/1NyFEycPlbjSv1kORg2awgqRW7NyPOzYO/preview
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Demo: test video 3
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https://docs.google.com/file/d/1Gc_ppF2K7KVjtKlVjalUnnZbrPEfgw18/preview
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Conclusions
● REX
● Perspectives 04
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Conclusion

21

● Sizing a “project framing “ phase is a good strategy
● Choose your hardware wisely
● Plan data collection carefully
● Train operators for labeling with pedagogy
● Model efficiency: data volume and labels’ quality are key

REX 

● Collect more data
● Improve labeling process
● Extend defect detection to other classes
● Automate rover movement
● Deployment

Perspectives 

Thank you for your attention !

Questions ?


