Computing Abductive Explanations for Boosted Regression Trees

Gilles Audemard ${ }^{1}$, Steve Bellart ${ }^{1}$, Jean-Marie Lagniez ${ }^{1}$ Pierre Marquis ${ }^{12}$

${ }^{1}$ Univ. Artois, CNRS, CRIL, Lens, France
${ }^{2}$ Institut Universitaire de France

July 03, 2023

Introduction

Introduction

Explainable Artificial Intelligence (XAI) is a subfield of AI that aims to make the decisions made by Al systems transparent and understandable to human users.

Black Box Explainability Tools

- LIME (Local Interpretable Model-Agnostic Explanations)
- SHAP (SHapley Additive exPlanations)
- Partial Dependence Plots (PDP)
- Anchors
- All these tools aim to increase the transparency and interpretability of black-box models, though they each have different strengths and limitations.

Limitations of Black Box Explainability Tools

Main Limitations

- Focus on Classification
- Lack of Robustness

Our Approach

Motivation

Focus on Regression

Robust explanation

Our Approach
We decided to pursue a model-specific approach for explaining boosted regression trees.

Contributions

- We presented and evaluated two anytime algorithms \mathbf{G} and \mathbf{E} for generating and evaluating abductive explanations for boosted regression trees.
- The datasets used for learning the boosted trees can be based on mixed type data, including categorical and numerical attributes.

Some preliminaries

Attributes

- Set of attributes $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ with each attribute A_{i} taking a value in domain D_{i}
- Types of attributes: Numerical, Categorical, Boolean
- Instance x is a vector $\left(v_{1}, \ldots, v_{n}\right)$ where each v_{i} is an element of D_{i}.
- Each pair $A_{i}=v_{i}$ is a characteristic of the instance x.

Example

Let us consider a loan application scenario with $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$:

- A_{1} : Numerical - income per month
- A_{2} : Categorical - employment status: "employed", "unemployed" or "self-employed"
- A_{3} : Boolean - is married or not

Regression Tree

- A regression tree over \mathcal{A} is a binary tree T, with internal nodes labeled with Boolean conditions on an attribute from \mathcal{A} and leaves labeled by real numbers.
- The value $T(x)$ of T for an instance x is given by the real number labeling the leaf reached from the root.

Boosted Regression Trees

- A boosted regression tree over \mathcal{A} is an ensemble of trees $F=\left\{T_{1}, \cdots, T_{m}\right\}$, where each T_{i} is a regression tree over \mathcal{A}.
- The value $F(x)$ of F for an instance x is given by $F(x)=\sum_{i=1}^{m} T_{i}(x)$.

Boolean Conditions and Constraints

- Let \mathcal{B} denote the set of all Boolean conditions used in F.
- The Boolean conditions used in F are not necessarily independent.
- Some constraints Σ over \mathcal{B} must be exploited to characterize the truth assignments over \mathcal{B}.

Example of Boosted Regression Trees

Example

F is built upon Boolean conditions: $\mathcal{B}=\left\{B_{1}^{1}, B_{2}^{1}, B_{3}^{1}, B_{1}^{2}, B_{2}^{2}, B_{3}^{2}, B^{3}\right\}$:

- B_{1}^{1}, B_{2}^{1} and B_{3}^{1} : are respectively $A_{1}>1000 \$, A_{1}>2000 \$$ and $A_{1}>3000 \$$.
- B_{1}^{2}, B_{2}^{2} and B_{3}^{2} : are respectively $A_{2}=$ "employed", $A_{2}=$ "unemployed" and $A_{2}=$ "self-employed".
- $B^{3}: A_{3}=1$ (is married).

Definition of Abductive Explanations for Boosted Regression Trees

Let F be a boosted regression tree over $\mathcal{A}, x \in X$ an instance, and I an interval over the reals such as $F(x) \in$.

Abductive Explanation

A term t over \mathcal{B} is an abductive explanation for x given F and I if and only if t covers x and for every instance $x^{\prime} \in X$ that is covered by t, we have $F\left(x^{\prime}\right) \in I$.

Subset-Minimal Abductive Explanation

A term t is a subset-minimal abductive explanation for x given F and I if and only if t is an abductive explanation for x given F and I and no proper subset of t is an abductive explanation for x given F and I.

Example of Subset-Minimal Abductive Explanation

Example of a prediction knowing an instance

Suppose that the applicant is described by $x_{e x}=(2200 \$$, "self-employed", 1$)$. Then,
$F\left(x_{e x}\right)=1500+250+250=2000 \$$.

A simple explanation is then $\left\{B_{1}^{1}, B_{2}^{1}, \neg B_{3}^{1}, \neg B_{1}^{2}, B_{3}^{2}, B^{3}\right\}$ or in simpler terms $\left\{B_{2}^{1}, \neg B_{3}^{1}, B_{3}^{2}, B^{3}\right\}$

Example of Subset-Minimal Abductive Explanation

Example of a subset-minimal abductive explanation knowing an instance ans an interval

On the same applicant, if we consider $I=[2000,2250]$ then $\left\{B_{2}^{1}, B_{3}^{2}, B^{3}\right\}$

Example of Subset-Minimal Abductive Explanation

$$
\begin{array}{ll}
t_{1}=\left\{B_{2}^{1}, \overline{B_{3}^{1}}, B_{3}^{2}, B^{3}\right\} & I_{t_{1}}=[2000,2000] \\
t_{2}=\left\{\overline{B_{3}^{1}}, B_{3}^{2}, B^{3}\right\} & I_{t_{2}}=[500,2000] \\
t_{3}=\left\{B_{2}^{1}, B_{3}^{2}, B^{3}\right\} & I_{t_{3}}=[2000,2250] \\
t_{4}=\left\{B_{2}^{1}, \overline{B_{3}^{1}}, B^{3}\right\} & I_{t_{4}}=[1500,2000] \\
t_{5}=\left\{B_{2}^{1}, \overline{B_{3}^{1}}, B_{3}^{2}\right\} & I_{t_{5}}=[1850,2250] \\
t_{6}=\top & I_{t_{6}}=[-100,2500]
\end{array}
$$

From boosted trees to MILP

General constraints

Constraints over \mathcal{B} encoding the corresponding domain theory Σ :

$$
\begin{align*}
& \forall A_{i} \in \mathcal{A}_{N}, \forall j \in\left[k_{i}-1\right], B_{j}^{i}-B_{j+1}^{i} \geq 0 \\
& \forall A_{i} \in \mathcal{A}_{C}, \forall B_{j}^{i}, B_{k}^{i} \in \tau\left(A_{i}\right), j \neq k, B_{j}^{i}+B_{k}^{i} \leq 1 \tag{1}
\end{align*}
$$

t is represented by :

$$
\begin{align*}
& \forall B_{j}^{i} \in t, B_{j}^{i}=1 \tag{2}\\
& \forall B_{j}^{i} \in t, B_{j}^{i}=0
\end{align*}
$$

For each leaf of each tree, we define $L_{t_{j}^{\prime}}^{i}$ to know if the leaf is active. By definition, only one must be set to true by tree:

$$
\begin{equation*}
\forall i \in[m], \sum_{t_{j}^{i} \in T_{i}} L_{t_{j}^{i}}^{i}=1 \tag{3}
\end{equation*}
$$

General constraints

For all $i \in[m]$, the following set of constraints indicates how each $L_{t_{j}^{i}}^{i}$ is connected to the Boolean variables of \mathcal{B} :

$$
\begin{equation*}
\forall t_{j}^{i} \in T_{i}, \sum_{B_{j}^{i} \in t_{j}^{i}} B_{j}^{i}+\sum_{B_{j}^{i} \in t_{j}^{i}}\left(1-B_{j}^{i}\right)-L_{t_{j}^{i}}^{i} \leq\left|t_{j}^{i}\right|-1 \tag{4}
\end{equation*}
$$

We define each $W_{i}(i \in[m])$ as:

$$
\begin{equation*}
\forall i \in[m], \sum_{j \in\left[p_{i}\right]} L_{t_{j}^{j}}^{i} \times w_{j}^{i}=W_{i} \tag{5}
\end{equation*}
$$

Let $F W$ be a continuous variable that represents the value of the regression tree for any truth assignment over \mathcal{B} :

$$
\begin{equation*}
\sum_{W_{i} \in \mathcal{W}} W_{i}=F W \tag{6}
\end{equation*}
$$

Generation: specific constraints

Given a non-empty interval $I=(I b, u b)$, we add:

$$
\begin{gather*}
(I L=1) \rightarrow(F W \leq I b) \tag{7}\\
(I U=1) \rightarrow(F W \geq u b) \tag{8}\\
I L+I U=1 \tag{9}
\end{gather*}
$$

Generation: main algorithm

Input: An instance x
Output: A subset-minimal abductive explanation t
$t_{\text {tot }}=$ toBoolean (x)
$t=t_{t o t}$
for cond in $t_{t o t}$ do
assignToMILP $(t \backslash\{$ cond $\})$
solution $=$ solveMILP()
unassignFromMILP $(t \backslash\{$ cond $\})$
if solution is UNSAT then

$$
t=t \backslash\{\text { cond }\} \text { end }
$$

end

Evaluation: example on a lower bound

- Initial setup:
- \mathcal{M}_{e} : a constraint-based model containing all \mathcal{M}_{g} constraints except Equation (9).
- lower: initially set to $F\left(x_{t}\right)$, where x_{t} satisfies $t \wedge \Sigma$.
- lower ${ }_{b}$: initially set to $m_{F}=\sum_{i=1}^{n} \min \left(T_{i}\right)$.
- Binary search strategy to determine or estimate m_{t} :
- Compute mid $=\frac{\text { lower }^{2} \text { lower }}{2}$.
- If $\mathcal{M}_{e} \wedge(F W \leq m i d)$ is inconsistent, lower ${ }_{b}$ is set to mid.
- If $\mathcal{M}_{e} \wedge(F W \leq m i d)$ is consistent, lower is set to $F W$.
- Repeat the binary search with updated bounds.
- This approach provides a boost to the binary search process.

Experiments

Experimental protocol

Name	\#A	\#N	\#C	\#B	\#I
Winequality-red	11	0	0	11	1599
Winequality-white	11	0	0	11	4898
CreditcardFraudDet.	29	0	0	29	284807
14d2-player-stats-final	112	111	1	0	20830
Houses-prices	46	26	20	0	2919
Steel ind. energy cons.	9	6	3	0	35040
Bike sharing: hour	15	13	0	2	17379
Bike sharing: daily	13	11	0	2	731
NASA airfoil self-noise	5	5	0	0	1503
abalone	9	8	1	0	4177

$$
\begin{gathered}
I_{F, x}^{r}=\left[F(x)-\left(\frac{r}{100} \cdot L_{F}\right), F(x)+\left(\frac{r}{100} \cdot L_{F}\right)\right] . \\
\text { with } \\
L_{F}=\sum_{i=1}^{n} \max \left(T_{i}\right)-\sum_{i=1}^{n} \min \left(T_{i}\right)
\end{gathered}
$$

Experiments on Generation

Figure: Empirical results about algorithm \mathbf{G} on the houses-prices dataset.

Experiments on Evaluation

Figure: Empirical results about algorithm \mathbf{E} on the houses-prices dataset.

Conclusion

Performance and Observations

- Most of the time, our algorithms can generate and evaluate abductive explanations within a few seconds.
- The explanations generated using G are generally significantly smaller than the initial instance descriptions.
- Notably, E's reduction of the imprecision can be very significant.

Applicability and Limitations

- These algorithms don't require any specific assumption about the learning method of the input regression tree ensemble.
- Therefore, they are applicable to general machine learning decision tree ensemble models.
- However, the size of the explanations produced by G can be quite large in certain cases, and even simplified explanations may not be intelligible enough for some users.

Future Directions

- This work sets the stage for focusing on applications where human expertise can be utilized to evaluate the quality of the generated explanations.
- The possibility of computing I_{t} given t and F can be leveraged to design interaction protocols with an explainee, aiming to provide explanations with a good generality/precision trade-off.

