Computing Abductive Explanations for Boosted Regression Trees

Gilles Audemard¹, **Steve Bellart**¹, Jean-Marie Lagniez¹ Pierre Marquis¹²

¹Univ. Artois, CNRS, CRIL, Lens, France

²Institut Universitaire de France

July 03, 2023

Introduction

E ► < E ►

Image: A image: A

Explainable Artificial Intelligence (XAI) is a subfield of AI that aims to make the decisions made by AI systems transparent and understandable to human users.

< □ > < 同 > < 回 > < 回 > < 回 >

- LIME (Local Interpretable Model-Agnostic Explanations)
- SHAP (SHapley Additive exPlanations)
- Partial Dependence Plots (PDP)

Anchors

• All these tools aim to increase the transparency and interpretability of black-box models, though they each have different strengths and limitations.

Limitations of Black Box Explainability Tools

Main Limitations

- Focus on Classification
- Lack of Robustness

Motivation

Focus on Regression

Robust explanation

Our Approach

We decided to pursue a **model-specific** approach for explaining **boosted regression trees**.

э

伺 ト イ ヨ ト イ ヨ ト

- We presented and evaluated two anytime algorithms **G** and **E** for **g**enerating and **e**valuating abductive explanations for boosted regression trees.
- The datasets used for learning the boosted trees can be based on mixed type data, including categorical and numerical attributes.

Some preliminaries

メロト メポト メヨト メヨト

Attributes

- Set of attributes $\mathcal{A} = \{A_1, \dots, A_n\}$ with each attribute A_i taking a value in domain D_i
- Types of attributes: Numerical, Categorical, Boolean
- Instance x is a vector (v_1, \ldots, v_n) where each v_i is an element of D_i .
- Each pair $A_i = v_i$ is a characteristic of the instance x.

Example

Let us consider a loan application scenario with $\mathcal{A} = \{A_1, A_2, A_3\}$:

- A1: Numerical income per month
- A₂: **Categorical** employment status: "*employed*", "*unemployed*" or "*self-employed*"
- A₃: Boolean is married or not

- A regression tree over A is a binary tree T, with internal nodes labeled with Boolean conditions on an attribute from A and leaves labeled by real numbers.
- The value T(x) of T for an instance x is given by the real number labeling the leaf reached from the root.

- A boosted regression tree over A is an ensemble of trees $F = \{T_1, \dots, T_m\}$, where each T_i is a regression tree over A.
- The value F(x) of F for an instance x is given by $F(x) = \sum_{i=1}^{m} T_i(x)$.

- Let \mathcal{B} denote the set of all Boolean conditions used in F.
- The Boolean conditions used in F are not necessarily independent.
- Some constraints Σ over B must be exploited to characterize the truth assignments over B.

Example of Boosted Regression Trees

Example

- *F* is built upon Boolean conditions: $\mathcal{B} = \{B_1^1, B_2^1, B_3^1, B_1^2, B_2^2, B_3^2, B^3\}$:
 - B_1^1 , B_2^1 and B_3^1 : are respectively $A_1 > 1000$ \$, $A_1 > 2000$ \$ and $A_1 > 3000$ \$.
 - B_1^2 , B_2^2 and B_3^2 : are respectively $A_2 = "employed"$, $A_2 = "unemployed"$ and $A_2 = "self-employed"$.
 - B^3 : $A_3 = 1$ (is married).

Steve Bellart (CRIL)

July 03, 2023

Definition of Abductive Explanations for Boosted Regression Trees

Let *F* be a boosted regression tree over A, $x \in X$ an instance, and *I* an interval over the reals such as $F(x) \in .$

Abductive Explanation

A term t over \mathcal{B} is an *abductive explanation* for x given F and I if and only if t covers x and for every instance $x' \in X$ that is covered by t, we have $F(x') \in I$.

Subset-Minimal Abductive Explanation

A term t is a subset-minimal abductive explanation for x given F and I if and only if t is an abductive explanation for x given F and I and no proper subset of t is an abductive explanation for x given F and I.

< □ > < □ > < □ > < □ > < □ > < □ >

Example of Subset-Minimal Abductive Explanation

Example of a prediction knowing an instance

Suppose that the applicant is described by $x_{ex} = (2200\$, "self-employed", 1)$. Then, $F(x_{ex}) = 1500 + 250 + 250 = 2000\$$.

A simple explanation is then $\{B_1^1, B_2^1, \neg B_3^1, \neg B_1^2, B_3^2, B^3\}$ or in simpler terms $\{B_2^1, \neg B_3^1, B_3^2, B^3\}$

Example of Subset-Minimal Abductive Explanation

Example of a subset-minimal abductive explanation knowing an instance ans an interval

On the same applicant, if we consider I = [2000, 2250] then $\{B_2^1, B_3^2, B^3\}$

$$\begin{array}{ll} t_1 = \{ \underline{B}_2^1, \overline{B}_3^1, B_3^2, B^3 \} & I_{t_1} = [2000, 2000] \\ t_2 = \{ \overline{B}_3^1, B_3^2, B^3 \} & I_{t_2} = [500, 2000] \\ t_3 = \{ B_2^1, B_3^2, B^3 \} & I_{t_3} = [2000, 2250] \\ t_4 = \{ B_2^1, \overline{B}_3^1, B^3 \} & I_{t_4} = [1500, 2000] \\ t_5 = \{ B_2^1, \overline{B}_3^1, B_3^2 \} & I_{t_5} = [1850, 2250] \\ t_6 = \top & I_{t_6} = [-100, 2500] \end{array}$$

Steve Bellart (CRIL)

July 03, 2023

17 / 31

From boosted trees to MILP

Image: A matrix and a matrix

Constraints over \mathcal{B} encoding the corresponding domain theory Σ :

$$\begin{aligned} \forall A_i \in \mathcal{A}_N, \forall j \in [k_i - 1], B_j^i - B_{j+1}^i \geq 0 \\ \forall A_i \in \mathcal{A}_C, \forall B_j^i, B_k^i \in \tau(A_i), j \neq k, B_j^i + B_k^i \leq 1 \end{aligned}$$
 (1)

t is represented by :

$$\forall B_j^i \in t, B_j^i = 1 \forall \overline{B_j^i} \in t, B_j^i = 0$$

$$(2)$$

For each leaf of each tree, we define $L_{t_j^i}^i$ to know if the leaf is active. By definition, only one must be set to true by tree:

$$\forall i \in [m], \sum_{t_j^i \in \mathcal{T}_i} L_{t_j^i}^i = 1 \tag{3}$$

General constraints

For all $i \in [m]$, the following set of constraints indicates how each $L_{t_j^i}^i$ is connected to the Boolean variables of \mathcal{B} :

$$\forall t_{j}^{i} \in T_{i}, \sum_{B_{j}^{i} \in t_{j}^{i}} B_{j}^{i} + \sum_{\overline{B_{j}^{i}} \in t_{j}^{i}} (1 - B_{j}^{i}) - L_{t_{j}^{i}}^{i} \le |t_{j}^{i}| - 1$$
(4)

We define each W_i $(i \in [m])$ as:

$$\forall i \in [m], \sum_{j \in [p_i]} L^i_{t^j_j} \times w^i_j = W_i$$
(5)

Let FW be a continuous variable that represents the value of the regression tree for any truth assignment over B:

$$\sum_{W_i \in \mathcal{W}} W_i = FW \tag{6}$$

Given a non-empty interval I = (Ib, ub), we add:

$$(IL = 1) \rightarrow (FW \le Ib) \tag{7}$$
$$(IU = 1) \rightarrow (FW \ge ub) \tag{8}$$
$$IL + IU = 1 \tag{9}$$

```
Input: An instance x
Output: A subset-minimal abductive explanation t
t_{tot} = toBoolean(x)
t = t_{tot}
for cond in t_{tot} do
    assignToMILP(t \setminus \{cond\})
    solution = solveMILP()
    unassignFromMILP(t \setminus \{ cond \})
    if solution is UNSAT then
      t = t \setminus \{\text{cond}\} \text{ end}
    end
```

Initial setup:

- \mathcal{M}_e : a constraint-based model containing all \mathcal{M}_g constraints except Equation (9).
- *lower*: initially set to $F(x_t)$, where x_t satisfies $t \wedge \Sigma$.
- *lower_b*: initially set to $m_F = \sum_{i=1}^n \min(T_i)$.
- Binary search strategy to determine or estimate *m_t*:
 - Compute $mid = \frac{lower+lower_b}{2}$.
 - If $\mathcal{M}_e \wedge (FW \leq mid)$ is inconsistent, *lower*_b is set to *mid*.
 - If $\mathcal{M}_e \wedge (FW \leq mid)$ is consistent, *lower* is set to *FW*.
- Repeat the binary search with updated bounds.
- This approach provides a boost to the binary search process.

Experiments

3

イロト イヨト イヨト イヨト

Experimental protocol

Name	#A	#N	#C	#B	#I
Winequality-red	11	0	0	11	1599
Winequality-white	11	0	0	11	4898
CreditcardFraudDet.	29	0	0	29	284807
l4d2-player-stats-final	112	111	1	0	20830
Houses-prices	46	26	20	0	2919
Steel ind. energy cons.	9	6	3	0	35040
Bike sharing: hour	15	13	0	2	17379
Bike sharing: daily	13	11	0	2	731
NASA airfoil self-noise	5	5	0	0	1503
abalone	9	8	1	0	4177

$$I_{F,x}^{r} = [F(x) - (\frac{r}{100} \cdot L_{F}), F(x) + (\frac{r}{100} \cdot L_{F})].$$

with

$$L_F = \sum_{i=1}^{n} max(T_i) - \sum_{i=1}^{n} min(T_i)$$

3

Figure: Empirical results about algorithm **G** on the *houses-prices* dataset.

Figure: Empirical results about algorithm E on the houses-prices dataset.

メロト メポト メヨト メヨト

3

- Most of the time, our algorithms can generate and evaluate abductive explanations within a few seconds.
- The explanations generated using **G** are generally significantly smaller than the initial instance descriptions.
- Notably, E's reduction of the imprecision can be very significant.

- These algorithms don't require any specific assumption about the learning method of the input regression tree ensemble.
- Therefore, they are applicable to general machine learning decision tree ensemble models.
- However, the size of the explanations produced by **G** can be quite large in certain cases, and even simplified explanations may not be intelligible enough for some users.

- This work sets the stage for focusing on applications where human expertise can be utilized to evaluate the quality of the generated explanations.
- The possibility of computing *I_t* given t and F can be leveraged to design interaction protocols with an explainee, aiming to provide explanations with a good generality/precision trade-off.