

CNIA 2023

Controversy Detection: a Text and Graph Neural Network Based Approach

Détection de la controverse : une approche basée sur les réseaux de neurones, appliquée aux graphes et aux textes

Benslimane Samy, Jérôme Azé, Sandra Bringay Caroline Mollevi, Maximilien Servajean samy.benslimane@lirmm.fr

LIRMM, University of Montpellier, Montpellier, France AMIS, Paul Valery University, Montpellier, France, Institut du Cancer Montpellier (ICM), Montpellier, France IDESP, UMR Inserm - Université de Montpellier, Montpellier, France

Introduction

Controversial topic: A controversial content can be defined as content which polarize attention into communities, stimulate interaction between them

Detecting controversy: Prevent fake news / Identify hot topics / Evolution of controversy

Donald J. Trump & Skippy Cavanough Php

With Mexico being one of the highest crime Nations in the world, we must have THE WALL. Mexico will pay for it through reimbursement/other.

Because I don't believe in an eye for an eye.

Left: Tweet from Donald Trump about Mexico wall. Right: Tweet of someone in favor the death penalty

Introduction

Controversial topic: A controversial content can be defined as content which polarize attention into communities, stimulate interaction between them

- Detecting controversy: Prevent fake news / Identify hot topics / Evolution of controversy
- Social media: Public debate + different opinions

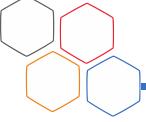
Tweet from Donald Trump about Mexico wall

Tweet about death penalty

Goal: Automatic detection of controversial topic on social media, using both structural and textual information

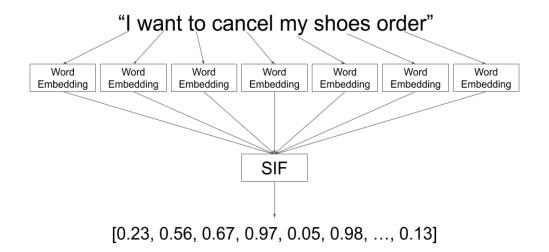
Contribution

- Graph Neural Network (GNN)-based controversy detection method
- Experimental study: 2 different approaches, on real-world datasets
- Incorporating textual features → To improve detection performance



Controversy detection/quantification: State-of-the-art

- Content-based methods → Based only on textual information & semantic
 - On Wikipedia: Use of word embeddings and sentence embeddings (word2vec, Bert)
 - + Apply models (Nearest Neighbors, LSTM, etc.)



Sznajder, B., Gera, A., Bilu, Y., Sheinwald, D., Rabinovich, E., Aharonov, R., Konopnicki, D., Slonim, N.: Controversy in context. CoRR (2019)

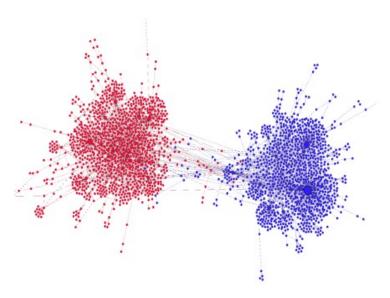
Dori-Hacohen, S., Jensen, D.D., Allan, J.: Controversy detection in wikipedia using collective classification. In: 39th International ACM SIGIR conference on Research and Development in Information Retrieval. pp. 797–800 (2016)

Jang, M., Allan, J.: Improving automated controversy detection on the web. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR. pp. 865–868. ACM (2016)

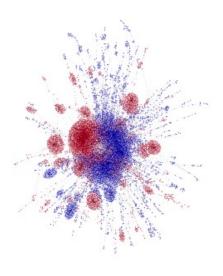
Jang, M., Foley, J., Dori-Hacohen, S., Allan, J.: Probabilistic approaches to controversy detection. In: 25th ACM International Conference on Information and Knowledge Management, CIKM. pp. 2069–2072 (2016)

Controversy detection/quantification: State-of-the-art

Structure-based methods → Focus on user interactions



Twitter Retweet graph of a controversial topic #russian_march



Same on a non-controversial topic #esxw

Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying controversy on social media. ACM Trans. Soc. Comput. 1(1), 3:1–3:27 (2018)

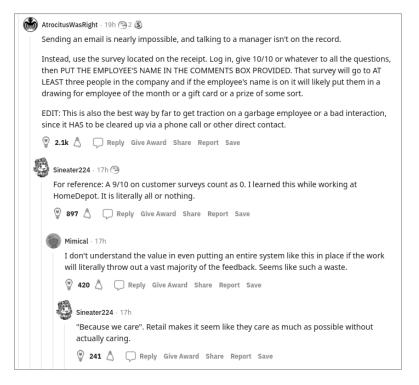
Emangholizadeh, H., Nourizade, M., Tajbakhsh, M.S., Hashminezhad, M., Esfahani, F.N.: A framework for quantifying controversy of social network debates using attributed networks: biased random walk (BRW). Soc. Netw. Anal. Min. 10(1), 90 (2020)

Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Reducing controversy by connecting opposing views. In: Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI. pp. 5249–5253 (2018)

Guerra, P.H.C., Jr., W.M., Cardie, C., Kleinberg, R.: A measure of polarization on social media networks based on community boundaries. In: Seventh International Conference on Weblogs and Social Media, ICWSM. The AAAI Press (2013)

Controversy detection/quantification: State-of-the-art

Hybrid methods → Use both content and structural information



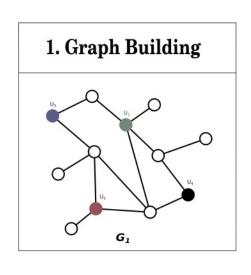
Reddit: sample of the comment-tree structure of a post. Both information, textual and structural, are available.

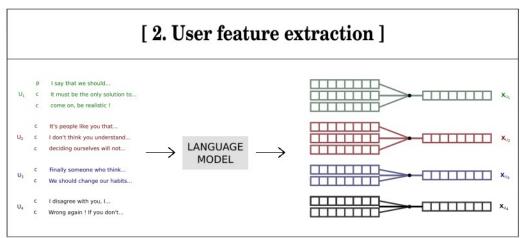
Zarate, J.M.O.D., Feuerstein, E.: Vocabulary-based method for quantifying controversy in social media. In: Ontologies and Concepts in Mind and Machine - 25th International Conference on Conceptual Structures, ICCS. Lecture Notes in Computer Science, vol. 12277, pp. 161–176. Springer (2020)

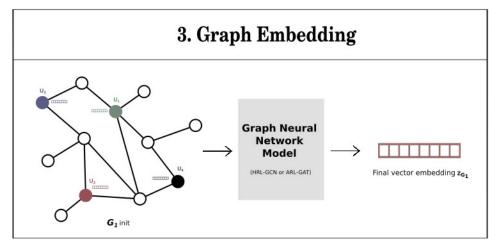
Hessel, J., Lee, L.: Something's brewing! early prediction of controversy-causing posts from discussion features. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT. pp. 1648–1659 (2019)

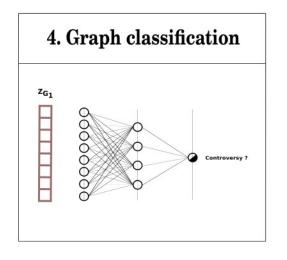
Zhong, L., Cao, J., Sheng, Q., Guo, J., Wang, Z.: Integrating semantic and structural information with graph convolutional network for controversy detection. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL. pp. 515–526. Association for Computational Linguistics (2020)

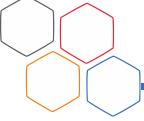
Controversy detection: Pipeline





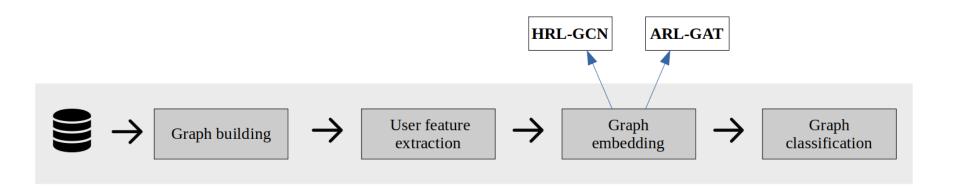




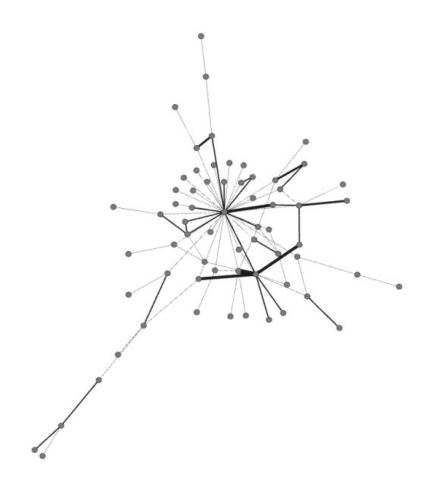


Controversy detection: Pipeline

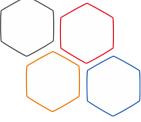
- Stage 1. Create the Reddit user graph from the comment-tree structure
- Stage 2. Create user node features from comments of each user
- Stage 3. Represent a graph vector embedding, using 2 different approaches
- Stage 4. Classify the embedding vector into controversial or not



Stage 1. Graph building

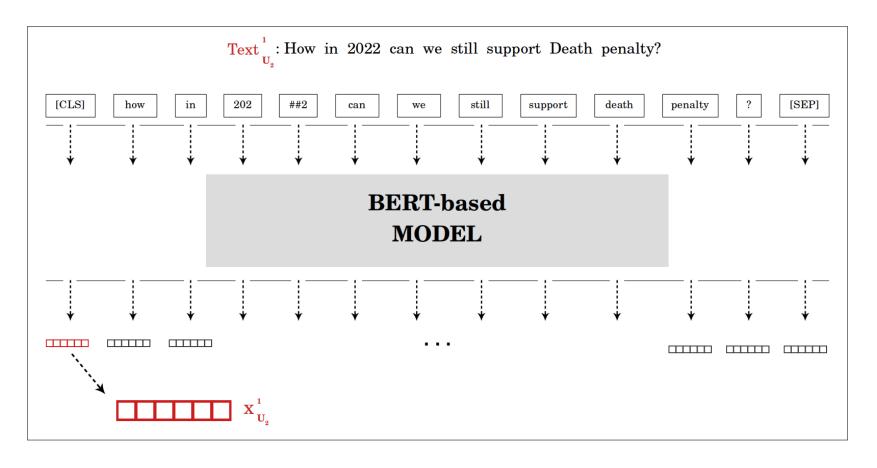


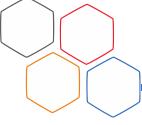
User graph of a controversial Reddit post, edges representing interactions between 2 users



Stage 2. Feature extraction

BERT model: transfer learning method based on transformers block

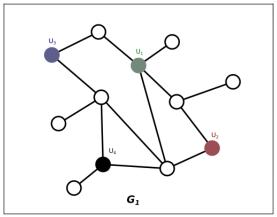


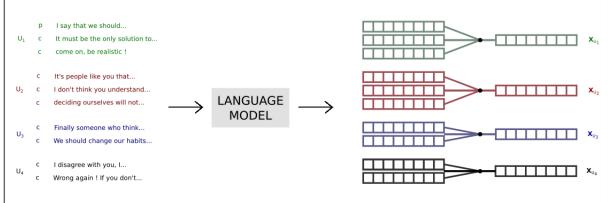


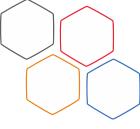
Stage 2. Feature extraction

BERT model: transfer learning method based on transformers block

- PT: last layer features of the pre-trained model (dim = 768)
- FT_sentiment: fine-tuned model with sentiment Reddit comment (dim = 64)
- FT_itself: fine-tuned with own comments, label depending on their respective post (dim = 64)





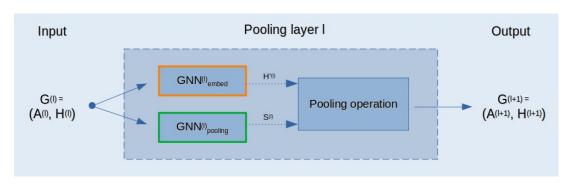


Stage 3. Graph embedding

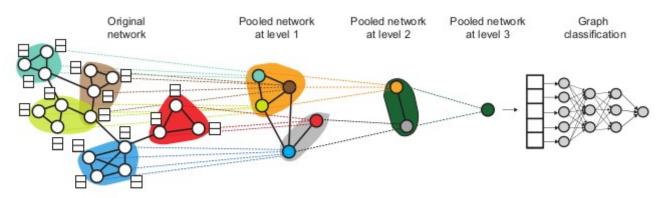


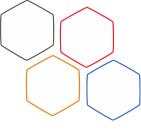
APPROACH 1: Hierarchical learning representation (HRL-GCN)

Pooling layer node representation

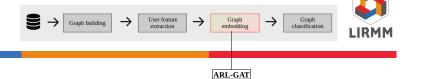


Final graph representation



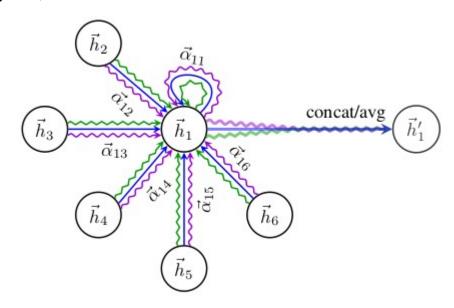


Stage 3. Graph embedding



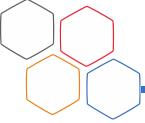
APPROACH 2: Attention-based representation (ARL-GAT)

At each Attention-layer I, for each node i

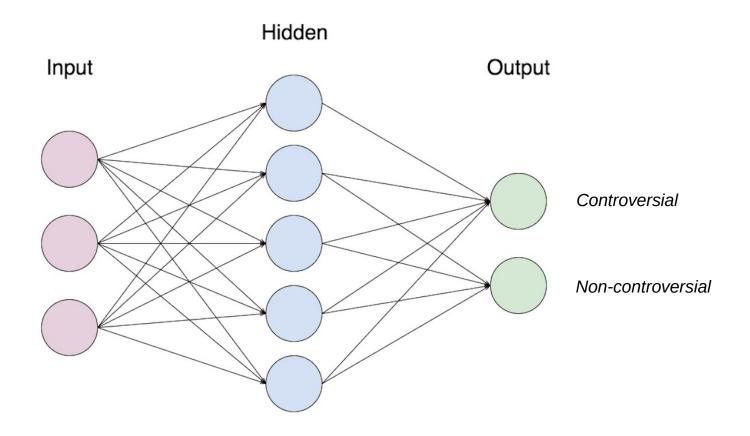


· At last layer L, learn graph embedding

$$z_G = \left| \left| {L \choose l=0} \left(\text{READOUT} \left(\left\{ h_{u_i}^{(l)} \middle| u_i \in U \right\} \right) \right) \right|$$



Stage 4. Graph classification



Reddit dataset

Source: Real-world data from Reddit, collected by Hessel & Lee (2018)

- Divided into 6 datasets, corresponding to 6 subreddits (AM, AW, LT, RS, PF, FN):
 - N posts/threads by dataset
 - For each threads/post in a subreddit
 Comment-tree related to the post, w/ meta-data inside

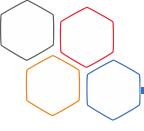
Reddit dataset

Source: Real-world data from Reddit, collected by Hessel & Lee (2018)

- Divided into 6 datasets, corresponding to 6 subreddits (AM, AW, LT, RS, PF, FN):
 - N posts/threads by dataset
 - For each threads/post in a subreddit
 Comment-tree related to the post, w/ meta-data inside

Table 1. Statistics on the 6 real-world balanced Reddit datasets.

	AM	AW	FN	LS	PF	RS
Number of posts	3305	2969	3934	1573	1004	2248
Average number of users by post	72	67	76	79	47	48
Average number of comments by post	144	141	159	132	95	98



Experiments set-up

Dataset

• Train/test set: 80/20%, for each of the 6 subreddit datasets

Baseline

- POST (Text+Time): only focus on the post (w/ bert) *
- (C-{Text Rate Tree} + Post): structural + text features *
- (DTPC-GCN): GNN model based **

HRL-GCN

• 4-layer GCN per pooling layer, with 1 and 2 pooling layers

ARL-GAT

• 2 node aggregators: Mean/sum

^{*} Hessel, J., Lee, L.: Something's brewing! early prediction of controversy-causing posts from discussion features. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT. pp. 1648–1659 (2019)

^{**} Zhong, L., Cao, J., Sheng, Q., Guo, J., Wang, Z.: Integrating semantic and structural information with graph convolutional network for controversy detection. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL. pp. 515–526. Association for Computational Linguistics (2020)

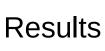
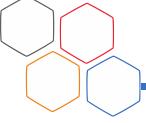


Table 1. Performance comparison of our GNN-based controversy detection with baseline. Performance is evaluated using accuracy of the validation set.

	AM	AW	FN	LS	PF	RS
POST (Text+Time)	68.1	65.4	65.5	66.2	66.5	69.3
DTPC-GCN	67.6					
$POST + C-\{TEXT_RATE_TREE\} < 1 \text{ hour}$	71.1	70	68.1	67.9	66.1	65.5
$POST + C-{Text_Rate_Tree} < 3 \text{ hours}$	74.3	72.3	70.5	71.8	69.3	67.8
ARL-GAT (MEAN-aggr)	65.7	69.2	72.4	58.4	53.7	62.9
ARL-GAT (SUM-aggr)	67.5	71	72.2	67	63.7	51.8
HRL-GCN (pool=2)	69	72.2	71.7	68.3	65.7	63.6
HRL-GCN (pool=1)	<u>69.6</u>	$\underline{74.6}$	72.2	67.9	<u>68.2</u>	<u>66.7</u>

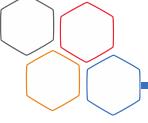
Table 2. Performance of our best GNN approach enriched with different user text embeddings as initial node features.

	AM	AW	FN	LS	PF	RS
HRL-GCN (pool=1)	69.6	74.6	72.2	67.9	68.2	66.7
+ PT	70.8	73.7	71	65.4	70.6	64.7
+ FT_SENTIMENT	69.1	72.9	70.5	68.6	66.7	64
+ FT_itself	67.3	73.9	71.8	68.3	70.6	63.8



Future Work

- → Work on controversy quantification, on different social media
- → Node text representation improvement
- → Look at quantifying controversy over time, and how to reduce controversy on topics



Future Work

- → Work on controversy quantification, on different social media
- → Node text representation improvement
- Look at quantifying controversy over time, and how to reduce controversy on topics

Thank you for your attention

Samy Benslimane, samy.benslimane@lirmm.fr

Controversy Detection: a Text and Graph Neural Network Based Approach

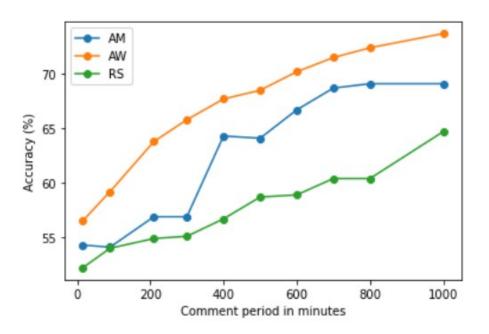
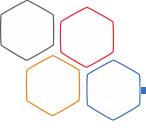


Fig. 4. Impact of comments availability on controversy detection performance.



Stage 3. Graph embedding

APPROACH 2: Attention-based representation

At each Attention-layer I, for each node i

1. Learn attention score

$$e_{u_i u_j}^{(l)} = a \left(\mathbf{W}^{(l)} h_{u_i}^{(l)}, \mathbf{W}^{(l)} h_{u_j}^{(l)} \right)$$

2. Normalize score

$$\alpha_{u_i u_j}^{(l)} = softmax(e_{u_i u_j}^{(l)}) = \frac{\exp(e_{u_i u_j}^{(l)})}{\sum_{u_k \in \tilde{\mathcal{N}}_{(u_i)}} \exp(e_{u_i u_k}^{(l)})}$$

3. Learn new node representation

$$h_{u_i}^{(l+1)} = \sigma \left(\sum_{u_j \in \tilde{\mathcal{N}}_{(u_i)}} \alpha_{u_i u_j}^{(l)} \ \mathbf{W}^{(l)} h_{u_j}^{(l)} \right)$$

4. At last layer L, learn graph embedding

$$z_G = \left| \left| {L \atop l=0} \left(\text{READOUT} \left(\left\{ h_{u_i}^{(l)} \middle| u_i \in U \right\} \right) \right) \right|$$