Adversarial Formal Semantics of Attack Trees and Related Problems

Thomas Brihaye, Sophie Pinchinat, Alexandre Terefenko

Université de Mons Université de Rennes

July 4, 2023

Introduction

- The attack tree model
- Related work
- 2 Semantics for attack tree
- 3 Results on decision problems

Situation

A thief wants to steal some document in a safe of a building without being seen.

The entrance in the building

An example of an attack tree

Related work

• Different syntax of attack trees:

- Sjouke Mauw and Martijn Oostdijk, Foundations of attack trees, International Conference on Information Security and Cryptology, Springer, 2005, pp. 186–198.
- Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, Is my attack tree correct ?, European Symposium on Research in Computer Security, Springer, 2017, pp. 83–102.
- Aivo Jürgenson and Jan Willemson, Computing exact outcomes of multiparameter attack trees, OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", Springer, 2008, pp. 1036-1051.

• Different semantics for attack trees:

- Sophie Pinchinat, Barbara Fila, Florence Wacheux, and Yann ThierryMieg, Attack trees : a notion of missing attacks, International Workshop on Graphical Models for Security, Springer, 2019, pp. 23-49.
- Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, Is my attack tree correct ?, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.
- Soss Horne, Sjouke Mauw, and Alwen Tiu, Semantics for specialising attack trees based on linear logic, Fundamenta Informaticae 153 (2017), no. 1-2, 57-86.

Survey: Wideł, W., Audinot, M., Fila, B., Pinchinat, S. (2019). *Beyond 2014: Formal Methods for Attack Tree–based Security Modeling.* ACM Computing Surveys (CSUR), 52(4), 1-36.

Introduction

- 2 Semantics for attack tree
 - Syntax
 - Path semantics
 - Strategy semantics
 - 3 Results on decision problems

Syntax of an attack tree

Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.

Syntax of an attack tree

Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.

Syntax

Syntax of an attack tree (no precondition)

Definition

An attack tree τ is:

- a Boolean formula ϕ over a set of proposition *Prop*,
- an expression $OP(\tau_1, ..., \tau_n)$ where $OP \in \{OR, AND \text{ and } SAND\}$ and $\tau_1, ..., \tau_n$ are attack trees.

Path semantics

Let $S = (S, \rightarrow, val)$ be a transition system with $val : S \rightarrow PROP$ a valuation function. We denote $\Pi(S)$ the set of all paths over S.

Definition

 $Paths(\tau)_{S}$ is inductively defined as follow:

- $Paths(\phi)_{\mathcal{S}} = \{s_0s_1...s_n \in \Pi(\mathcal{S}) | s_n \models \phi\},\$
- For $Paths(OR(\tau_1, ..., \tau_n))_S$, we use the **union** of the semantics,
- For Paths(SAND(τ₁,...,τ_n))_S, we use the synchronised concatenation of the semantics,
- For $Paths(AND(\tau_1, ..., \tau_n))_S$, we use the **merge** of the semantics.

Example: path semantics

The entrance in the building

Intuition for a strategy semantics

Paths semantics	Strategy semantics
Transition system	Game arena
Paths	Strategies
$Paths(\phi) = \{s_0s_n \in \Pi(\mathcal{S}) s_n \models \phi\}$	$Strat(\phi)$ winning strategies for the reachability game defined by ϕ

For an attack tree τ , $Strat(\tau)$ denotes all winning attacking strategies.

Example: strategy semantics

Problems with a compositional semantics

Strategy semantics

Definition

The strategy semantics of an attack tree τ is the set of all trees σ respecting the two following conditions:

- σ denotes a strategy
- every branch of σ is a path in $Paths(\tau)$

Introduction

Semantics for attack tree

3 Results on decision problems

Results on decision problems

Considered decision problems

	Paths semantics	Strategy semantics
Membership Problem		
Non-Emptiness Problem		

• NP-complete if preconditions for leaves.¹

¹Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.

	Paths semantics	Strategy semantics
Membership Problem	Р	
Non-Emptiness Problem		

- NP-complete if preconditions for leaves.¹
- Without preconditions: a backward induction over the input path can solve the problem in polynomial time.

¹Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.

	Paths semantics	Strategy semantics
Membership Problem	Р	
Non-Emptiness Problem	NP-complete ²	

²Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.

	Paths semantics	Strategy semantics
Membership Problem	Р	
Non-Emptiness Problem	NP-complete	

Hardness: $\exists x_1 \exists x_2 \exists x_3, x_1 \land (x_2 \lor x_3) \land (\neg x_2 \lor x_3)$

 $\{P_1\}$ $\{P_2\}$ $\{P_2, P_3\}$ p_1 p_2 р3 {start} Start start $\neg p_3$ $\neg p_1$ $\neg p_2$ P_1 P_2 P_3 Ø $\{P_3\}$ Ø

	Paths semantics	Strategy semantics
Membership Problem	Р	
Non-Emptiness Problem	NP-complete	PSPACE-complete

Membership:

- Semantics non-empty \implies existence of not too long strategies
- construct an alternating Turing machine:
 - Guess a play π (AP)
 - check whether $\pi \in Paths(\tau)$

	Paths semantics	Strategy semantics
Membership Problem	Р	
Non-Emptiness Problem	NP-complete	PSPACE-complete

Hardness: $\exists x_1 \forall x_2 \exists x_3, x_1 \land (x_2 \lor x_3) \land (\neg x_2 \lor x_3)$

	Paths semantics	Strategy semantics
Membership Problem	Р	coNP -complete
Non-Emptiness Problem	NP-complete	PSPACE-complete

	Paths semantics	Strategy semantics
Membership Problem	Р	coNP-complete
Non-Emptiness Problem	NP-complete	PSPACE-complete

Hardness: $\forall x_1 \forall x_2 \forall x_3, x_1 \land (x_2 \lor x_3) \land (\neg x_2 \lor x_3)$

	Paths semantics	Strategy semantics
Membership Problem	Р	coNP -complete
Non-Emptiness Problem	NP-complete	PSPACE-complete

In conclusion

Bibliography

Bibliography

- Wideł, W., Audinot, M., Fila, B., Pinchinat, S. (2019). Beyond 2014: Formal Methods for Attack Tree-based Security Modeling. ACM Computing Surveys (CSUR), 52(4), 1-36.
- Sjouke Mauw and Martijn Oostdijk, *Foundations of attack trees*, International Conference on Information Security and Cryptology, Springer, 2005, pp. 186–198.
- Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83–102.
- Aivo Jürgenson and Jan Willemson, *Computing exact outcomes of multiparameter attack trees*, OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", Springer, 2008, pp. 1036-1051.
- Sophie Pinchinat, Barbara Fila, Florence Wacheux, and Yann ThierryMieg, *Attack trees : a notion of missing attacks*, International Workshop on Graphical Models for Security, Springer, 2019, pp. 23-49.
- Maxime Audinot, Sophie Pinchinat, and Barbara Kordy, *Is my attack tree correct ?*, European Symposium on Research in Computer Security, Springer, 2017, pp. 83-102.
- Ross Horne, Sjouke Mauw, and Alwen Tiu, Semantics for specialising attack trees based on linear logic, Fundamenta Informaticae 153 (2017), no. 1-2, 57-86.
- Hopcroft, J. E., Motwani, R., Ullman, J. D. (2001). Introduction to automata theory, languages, and computation. Acm Sigact News, 32(1), 60-65.
- Paul, S., Ramanujam, R., Simon, S. (2015). Automata and compositional strategies in extensive form games. In Models of Strategic Reasoning (pp. 174-201). Springer, Berlin, Heidelberg.