Complexity of Reasoning with Cardinality Minimality Conditions

Nadia Creignou¹ Frédéric Olive¹ Johannes Schmidt²

February, AAAI, 2023 Washington D.C.

¹Aix-Marseille Université, France ²Jönköping University, Sweden, Speaker

Structure of the Talk

- **1** The CardMinSat problem,
- 2 Preliminaries (propositional logic, constraint languages),
- **3** Complexity Results,
- 4 Concluding Remarks.

The CardMinSat Problem

Problem: CardMinSat

Input: A propositional formula ϕ and a variable $x \in var(\phi)$.

Question: Is x true in a cardinality-minimal model of ϕ ?

Cardinality-minimal model: a model with minimal number of variables assigned to 1.

The CardMinSat Problem

Problem: CardMinSat Input: A propositional formula ϕ and a variable $x \in var(\phi)$. Question: Is x true in a cardinality-minimal model of ϕ ?

Cardinality-minimal model: a model with minimal number of variables assigned to 1. CardMinSat is complete for the class $\Theta_2^{\rm P}$ (Wagner 1988; C., Pichler, Woltran 2018). $\Theta_2^{\rm P} = \mathsf{P}^{\mathsf{NP}[\mathcal{O}(\log n)]} = \mathsf{polynomial}$ with a logarithmic number of calls to an NP-oracle.

 $\mathsf{NP} \subseteq \Theta_2^\mathrm{P} \subseteq \mathsf{P}^{\mathsf{NP}} \subseteq \mathsf{NP}^{\mathsf{NP}}$

The CardMinSat Problem - relevance to AI

Many AI-related reasoning problems use some notion of minimality. For instance

Belief revision.

Principle: minimal change

Abduction.

Minimal explanations, relevance problems.

When cardinality-minimality is chosen as minimality criterion, all these problems are closely related to CardMinSat.

The CardMinSat Problem - relevance to AI

Many AI-related reasoning problems use some notion of minimality. For instance

Belief revision.

Principle: minimal change

• Abduction.

Minimal explanations, relevance problems.

When cardinality-minimality is chosen as minimality criterion, all these problems are closely related to CardMinSat.

Conducting a (more) detailed complexity analysis of CardMinSat can therefore advance our understanding of these problems' complexity.

The CardMinSat Problem - detailed complexity analysis

Consider CardMinSat in fragments of propositional logic in Schaefer's framework.

This will cover well-known fragments such as Horn, Krom, affine, and many more.

Definition

• A logical relation of arity k is a relation $R \subseteq \{0, 1\}^k$.

Example (logical relation)

 $N=\{0,1\}^3\setminus\{\,000,111\,\},$ a relation of arity 3.

Definition

- A logical relation of arity k is a relation $R \subseteq \{0, 1\}^k$.
- A constraint C over R is a formula $C = R(x_1, \ldots, x_k)$, where $x'_i s$ are variables.

Example (constraint)

 $C = N(x_1, x_2, x_3)$

Definition

- A logical relation of arity k is a relation $R \subseteq \{0, 1\}^k$.
- A constraint C over R is a formula $C = R(x_1, \ldots, x_k)$, where $x'_i s$ are variables.
- An assignment σ to the x_i 's satisfies C if $(\sigma(x_1), \ldots, \sigma(x_k)) \in R$.

Example (assignment satisfies constraint) $\{011\} \models N(x_1, x_2, x_3), \{111\} \nvDash N(x_1, x_2, x_3).$

Definition

- A logical relation of arity k is a relation $R \subseteq \{0, 1\}^k$.
- A constraint C over R is a formula $C = R(x_1, \ldots, x_k)$, where $x'_i s$ are variables.
- An assignment σ to the x_i 's satisfies C if $(\sigma(x_1), \ldots, \sigma(x_k)) \in R$.
- \blacksquare A constraint language Γ is a finite set of logical relations.

Example (constraint language)

 $\Gamma = \{N, E, D\} = \{\{0, 1\}^3 \setminus \{000, 111\}, \{00, 11\}, \{10, 01\}\}.$

Definition

- A logical relation of arity k is a relation $R \subseteq \{0, 1\}^k$.
- A constraint C over R is a formula $C = R(x_1, \ldots, x_k)$, where $x'_i s$ are variables.
- An assignment σ to the x_i 's satisfies C if $(\sigma(x_1), \ldots, \sigma(x_k)) \in R$.
- \blacksquare A constraint language Γ is a finite set of logical relations.
- \blacksquare A $\Gamma\text{-formula}$ is a finite conjunction of constraints over relations in $\Gamma.$

Example (Γ -formula)

 $N(x, y, z) \wedge E(x, y) \wedge D(x, z)$ where $N, E, D \in \Gamma$.

Definition

- A logical relation of arity k is a relation $R \subseteq \{0, 1\}^k$.
- A constraint C over R is a formula $C = R(x_1, \ldots, x_k)$, where $x'_i s$ are variables.
- An assignment σ to the x_i 's satisfies C if $(\sigma(x_1), \ldots, \sigma(x_k)) \in R$.
- \blacksquare A constraint language Γ is a finite set of logical relations.
- A Γ -formula is a finite conjunction of constraints over relations in Γ .
- An assignment σ satisfies an Γ -formula ϕ if σ satisfies every constraint in ϕ .

Example (assignment satisfies Γ -formula {001} $\models N(x, y, z) \land E(x, y) \land D(x, z)$.

Problems in Schaefer's framework

Problem: $SAT(\Gamma)$ Input: A Γ -formula ϕ Question: Is ϕ satisfiable?

Problem: CardMinSat(Γ) Input: A Γ -formula ϕ and a variable $x \in var(\phi)$ Question: Is x true in a cardinality-minimal model of ϕ ?

A k-ary relation R is represented by a formula ϕ in CNF if ϕ is a formula over k distinct variables x_1, \ldots, x_k and $\phi \equiv R(x_1, \ldots, x_k)$.

Example

•
$$E(x, y) \equiv (x + y) = 0 \equiv (\overline{x} \lor y) \land (x \lor \overline{y})$$

• $D(x, y) \equiv (x + y = 1) \equiv (x \lor y) \land (\overline{x} \lor \overline{y})$

$$N(x, y, z) = (x \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z})$$

A k-ary relation R is represented by a formula ϕ in CNF if ϕ is a formula over k distinct variables x_1, \ldots, x_k and $\phi \equiv R(x_1, \ldots, x_k)$.

A relation R is

- Horn, dual
Horn, Krom, 0/1-valid, if ϕ is so.
- Krom, if ϕ is a 2-CNF formula.
- Affine, if ϕ is a conjunction of linear equations (over $\{0, 1\}$).
- Width-2-affine, if ϕ is a conjunction of linear equations of size two, i.e., $(x \neq y), (x = y).$

Example

• $E(x, y) \equiv (x + y = 0) \equiv (\bar{x} \lor y) \land (x \lor \bar{y})$ *E* is width-2-affine, Krom, Horn, 0 and 1-valid.

Example

- $E(x, y) \equiv (x + y = 0) \equiv (\bar{x} \lor y) \land (x \lor \bar{y})$ E is width-2-affine, Krom, Horn, 0 and 1-valid.
- $D(x,y) \equiv (x + y = 1) \equiv (x \lor y) \land (\bar{x} \lor \bar{y})$ D is width-2-affine, Krom, but not Horn (01, 10 are models but 00 is not).

Example

- $E(x, y) \equiv (x + y = 0) \equiv (\bar{x} \lor y) \land (x \lor \bar{y})$ E is width-2-affine, Krom, Horn, 0 and 1-valid.
- $D(x, y) \equiv (x + y = 1) \equiv (x \lor y) \land (\bar{x} \lor \bar{y})$ D is width-2-affine, Krom, but not Horn (01, 10 are models but 00 is not).
- $N(x, y, z) \equiv (x \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z})$ N is not affine, not Krom, not Horn

Schaefer's Dichotomy Theorem (STOC 1978)

Theorem

 $\operatorname{SAT}(\Gamma)$ is in P if Γ is Horn, dual Horn, Krom, affine or 0- or 1-valid, and NP-complete otherwise.

A note on proof methods

- In 1978 Schaefer's Theorem was proven via many case distinctions.
- In the late 90's tools from universal algebra simplified the proof significantly (Jeavons 1998).
 - □ The expressivity of a relation is characterized by the closure properties of its set of models.
 - ^D Closure functions sets are clones, described by Post's lattice.
 - Complexity results for $SAT(\Gamma)$ can be obtained through a systematic examination of Post's lattice.

New Results

Main Theorem

 $\operatorname{Problem:}\ \operatorname{CardMinSat}(\Gamma)$

Input: A Γ -formula ϕ and a variable $x \in var(\phi)$

Question: Is \varkappa true in a cardinality-minimal model of $\phi?$

Theorem

CardMinSat(Γ) in P if Γ is width-2-affine or Horn or 0-valid, and Θ_2^{P} -complete otherwise.

A note on proof methods

For CardMinSat, the initial algebraic tools are not applicable, and we use advanced algebraic tools (Schnoor&Schnoor 2008, Lagerkvist 2014).

Application to Abduction

A propositional abduction problem $\mathcal{P} = (V, H, M, T),$ where:

- V is a finite set of variables,
- $H \subseteq V$ is the set of hypotheses,
- \blacksquare $M\subseteq V$ is the set of manifestations and
- \blacksquare T is a consistent theory in the form of a propositional formula.

A set $S \subseteq H$ is a solution (also called explanation) to \mathcal{P} if $T \cup S$ is consistent and $T \cup S \models M$ holds.

Problem: Card-min-Relevance Input: $\mathcal{P} = (V, H, M, T)$ and hypothesis $h \in H$. Question: Is h relevant, i.e., does \mathcal{P} admit a cardinality-minimal solution \mathcal{S} such that $h \in \mathcal{S}$?

Complexity of Card-min-Relevance

Problem: Card-min-Relevance Input: PAP $\mathcal{P} = (V, H, M, T)$ and hypothesis $h \in H$. Question: Is h relevant, i.e., does \mathcal{P} admit a cardinality-minimal solution \mathcal{S} such that $h \in \mathcal{S}$?

The Card-min-Relevance problem is:

- Θ_3^{P} -complete in its full generality (Eiter and Gottlob, 1995)
- Θ_2^{P} -complete in the Horn case (Eiter and Gottlob, 1995)
- Θ_2^{P} -complete in the Krom case (C., Pichler, Woltran, 2018)

Here we prove that the Card-min-Relevance problem is Θ_2^{P} -complete in the affine case, by a reduction from CardMinSat($\{x \oplus y \oplus z\}$)

Conclusion

• The result is still a dichotomy, only membership in P and Θ_2^{P} -completeness arise, nothing in between.

Future Work

- Address systematic complexity classifications for the related problems from belief revision and abduction.
- Consider parametrized complexity. For Abduction a lot is already done here, but the abduction relevance problem based on cardinality-minimality is a blind spot, even in classic complexity. CardMinSat will help advance here.

Conclusion

• The result is still a dichotomy, only membership in P and $\Theta_2^{\rm P}$ -completeness arise, nothing in between.

Future Work

- Address systematic complexity classifications for the related problems from belief revision and abduction.
- Consider parametrized complexity. For Abduction a lot is already done here, but the abduction relevance problem based on cardinality-minimality is a blind spot, even in classic complexity. CardMinSat will help advance here.

☺ Thanks! ☺

And thanks to our sponsor: CIRM, Research in pairs 1886.