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Structure of the Talk

1 The CardMinSat problem,
2 Preliminaries (propositional logic, constraint languages),
3 Complexity Results,
4 Concluding Remarks.
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The CardMinSat Problem

Problem: CardMinSat
Input: A propositional formula φ and a variable x ∈ var(φ).

Question: Is x true in a cardinality-minimal model of φ?

Cardinality-minimal model: a model with minimal number of variables assigned to 1.

CardMinSat is complete for the class ΘP
2 (Wagner 1988; C., Pichler, Woltran 2018).

ΘP
2 = PNP[O(log n)] = polynomial with a logarithmic number of calls to an NP-oracle.

NP ⊆ ΘP
2 ⊆ PNP ⊆ NPNP
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The CardMinSat Problem - relevance to AI

Many AI-related reasoning problems use some notion of minimality. For instance

Belief revision.
Principle: minimal change
Abduction.
Minimal explanations, relevance problems.

When cardinality-minimality is chosen as minimality criterion, all these problems are
closely related to CardMinSat.

Conducting a (more) detailed complexity analysis of CardMinSat can therefore advance
our understanding of these problems’ complexity.
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The CardMinSat Problem - detailed complexity analysis

Consider CardMinSat in fragments of propositional logic in Schaefer’s framework.

This will cover well-known fragments such as Horn, Krom, affine, and many more.
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Relational Algebra

Definition
A logical relation of arity k is a relation R ⊆ {0, 1}k .

A constraint C over R is a formula C = R(x1, . . . , xk), where x ′i s are variables.
An assignment σ to the xi ’s satisfies C if (σ(x1), . . . , σ(xk)) ∈ R .
A constraint language Γ is a finite set of logical relations.
A Γ-formula is a finite conjunction of constraints over relations in Γ.
An assignment σ satisfies an Γ-formula φ if σ satisfies every constraint in φ.

Example (logical relation)
N = {0, 1}3 \ { 000, 111 }, a relation of arity 3.
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Relational Algebra

Definition
A logical relation of arity k is a relation R ⊆ {0, 1}k .
A constraint C over R is a formula C = R(x1, . . . , xk), where x ′i s are variables.

An assignment σ to the xi ’s satisfies C if (σ(x1), . . . , σ(xk)) ∈ R .
A constraint language Γ is a finite set of logical relations.
A Γ-formula is a finite conjunction of constraints over relations in Γ.
An assignment σ satisfies an Γ-formula φ if σ satisfies every constraint in φ.

Example (constraint)
C = N(x1, x2, x3)
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Relational Algebra

Definition
A logical relation of arity k is a relation R ⊆ {0, 1}k .
A constraint C over R is a formula C = R(x1, . . . , xk), where x ′i s are variables.
An assignment σ to the xi ’s satisfies C if (σ(x1), . . . , σ(xk)) ∈ R .

A constraint language Γ is a finite set of logical relations.
A Γ-formula is a finite conjunction of constraints over relations in Γ.
An assignment σ satisfies an Γ-formula φ if σ satisfies every constraint in φ.

Example (assignment satisfies constraint)
{011} |= N(x1, x2, x3), {111} 6|= N(x1, x2, x3).
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Relational Algebra

Definition
A logical relation of arity k is a relation R ⊆ {0, 1}k .
A constraint C over R is a formula C = R(x1, . . . , xk), where x ′i s are variables.
An assignment σ to the xi ’s satisfies C if (σ(x1), . . . , σ(xk)) ∈ R .
A constraint language Γ is a finite set of logical relations.

A Γ-formula is a finite conjunction of constraints over relations in Γ.
An assignment σ satisfies an Γ-formula φ if σ satisfies every constraint in φ.

Example (constraint language)
Γ = {N,E ,D} = {{0, 1}3 \ { 000, 111 }, {00, 11}, {10, 01}}.
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Relational Algebra

Definition
A logical relation of arity k is a relation R ⊆ {0, 1}k .
A constraint C over R is a formula C = R(x1, . . . , xk), where x ′i s are variables.
An assignment σ to the xi ’s satisfies C if (σ(x1), . . . , σ(xk)) ∈ R .
A constraint language Γ is a finite set of logical relations.
A Γ-formula is a finite conjunction of constraints over relations in Γ.

An assignment σ satisfies an Γ-formula φ if σ satisfies every constraint in φ.

Example (Γ-formula)
N(x , y , z) ∧ E (x , y) ∧ D(x , z) where N,E ,D ∈ Γ.
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Relational Algebra

Definition
A logical relation of arity k is a relation R ⊆ {0, 1}k .
A constraint C over R is a formula C = R(x1, . . . , xk), where x ′i s are variables.
An assignment σ to the xi ’s satisfies C if (σ(x1), . . . , σ(xk)) ∈ R .
A constraint language Γ is a finite set of logical relations.
A Γ-formula is a finite conjunction of constraints over relations in Γ.
An assignment σ satisfies an Γ-formula φ if σ satisfies every constraint in φ.

Example (assignment satisfies Γ-formula)
{001} |= N(x , y , z) ∧ E (x , y) ∧ D(x , z).
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Problems in Schaefer’s framework

Problem: SAT(Γ)
Input: A Γ-formula φ

Question: Is φ satisfiable?

Problem: CardMinSat(Γ)
Input: A Γ-formula φ and a variable x ∈ var(φ)

Question: Is x true in a cardinality-minimal model of φ?
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Specific Constraint Languages

A k-ary relation R is represented by a formula φ in CNF if φ is a formula over k
distinct variables x1, . . . , xk and φ ≡ R(x1, . . . , xk).

Example
E (x , y) ≡ (x + y) = 0 ≡ (x̄ ∨ y) ∧ (x ∨ ȳ)

D(x , y) ≡ (x + y = 1) ≡ (x ∨ y) ∧ (x̄ ∨ ȳ)

N(x , y , z) ≡ (x ∨ y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)

Slide 8



Specific Constraint Languages

A k-ary relation R is represented by a formula φ in CNF if φ is a formula over k
distinct variables x1, . . . , xk and φ ≡ R(x1, . . . , xk).

A relation R is
Horn, dualHorn, Krom, 0/1-valid, if φ is so.
Krom, if φ is a 2-CNF formula.
Affine, if φ is a conjunction of linear equations (over {0, 1}).
Width-2-affine, if φ is a conjunction of linear equations of size two, i.e.,
(x 6= y), (x = y).
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Specific Constraint Languages

Example
E (x , y) ≡ (x + y = 0) ≡ (x̄ ∨ y) ∧ (x ∨ ȳ)
E is width-2-affine, Krom, Horn, 0 and 1-valid.

D(x , y) ≡ (x + y = 1) ≡ (x ∨ y) ∧ (x̄ ∨ ȳ)
D is width-2-affine, Krom, but not Horn (01, 10 are models but 00 is not).
N(x , y , z) ≡ (x ∨ y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)
N is not affine, not Krom, not Horn
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E is width-2-affine, Krom, Horn, 0 and 1-valid.
D(x , y) ≡ (x + y = 1) ≡ (x ∨ y) ∧ (x̄ ∨ ȳ)
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Schaefer’s Dichotomy Theorem (STOC 1978)

Theorem
SAT(Γ) is in P if Γ is Horn, dual Horn, Krom, affine or 0- or 1-valid,
and NP-complete otherwise.
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A note on proof methods

In 1978 Schaefer’s Theorem was proven via many case distinctions.
In the late 90’s tools from universal algebra simplified the proof significantly
(Jeavons 1998).

The expressivity of a relation is characterized by the closure properties of its set of
models.
Closure functions sets are clones, described by Post’s lattice.
Complexity results for SAT(Γ) can be obtained through a systematic examination of
Post’s lattice.
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New Results



Main Theorem

Problem: CardMinSat(Γ)
Input: A Γ-formula φ and a variable x ∈ var(φ)

Question: Is x true in a cardinality-minimal model of φ?

Theorem
CardMinSat(Γ) in P if Γ is width-2-affine or Horn or 0-valid,
and ΘP

2 -complete otherwise.

Slide 16



implicative

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B+ essentially
positive

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B-essentially
negative

negative positive

dualHorn
1-valid

dualHorn

definite
dualHorn

definite
Horn

Horn

Horn
0-valid

strict
2-affine

2-affine

Krom

affine

complementive,
0-valid, 1-valid

complementive

1-valid0-valid

IBF

IR1IR0

IR2

IM

IM1IM0

IM2
IS21

IS31

IS1

IS212

IS312

IS12

IS211

IS311

IS11

IS210

IS310

IS10

IS20

IS30

IS0

IS202

IS302

IS02

IS201

IS301

IS01

IS200

IS300

IS00

ID

ID1

ID2

IE

IE1IE0

IE2

IV

IV0 IV1

IV2

IL

IL0 IL1IL3

IL2

IN

IN2

II

II0 II1

II2
CardMinSat:

ΘP
2-complete

∈ P

implicative

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B+ essentially
positive

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B-essentially
negative

negative positive

dualHorn
1-valid

dualHorn

definite
dualHorn

definite
Horn

Horn

Horn
0-valid

strict
2-affine

2-affine

Krom

affine

complementive,
0-valid, 1-valid

complementive

1-valid0-valid

IBF

IR1IR0

IR2

IM

IM1IM0

IM2
IS21

IS31

IS1

IS212

IS312

IS12

IS211

IS311

IS11

IS210

IS310

IS10

IS20

IS30

IS0

IS202

IS302

IS02

IS201

IS301

IS01

IS200

IS300

IS00

ID

ID1

ID2

IE

IE1IE0

IE2

IV

IV0 IV1

IV2

IL

IL0 IL1IL3

IL2

IN

IN2

II

II0 II1

II2
Sat:

NP-complete
∈ P

Slide 17



implicative

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B+ essentially
positive

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B-essentially
negative

negative positive

dualHorn
1-valid

dualHorn

definite
dualHorn

definite
Horn

Horn

Horn
0-valid

strict
2-affine

2-affine

Krom

affine

complementive,
0-valid, 1-valid

complementive

1-valid0-valid

IBF

IR1IR0

IR2

IM

IM1IM0

IM2
IS21

IS31

IS1

IS212

IS312

IS12

IS211

IS311

IS11

IS210

IS310

IS10

IS20

IS30

IS0

IS202

IS302

IS02

IS201

IS301

IS01

IS200

IS300

IS00

ID

ID1

ID2

IE

IE1IE0

IE2

IV

IV0 IV1

IV2

IL

IL0 IL1IL3

IL2

IN

IN2

II

II0 II1

II2
CardMinSat:

ΘP
2-complete

∈ P

implicative

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B+ essentially
positive

𝑘 = 2

𝑘 = 3

width 𝑘

IHS-B-essentially
negative

negative positive

dualHorn
1-valid

dualHorn

definite
dualHorn

definite
Horn

Horn

Horn
0-valid

strict
2-affine

2-affine

Krom

affine

complementive,
0-valid, 1-valid

complementive

1-valid0-valid

IBF

IR1IR0

IR2

IM

IM1IM0

IM2
IS21

IS31

IS1

IS212

IS312

IS12

IS211

IS311

IS11

IS210

IS310

IS10

IS20

IS30

IS0

IS202

IS302

IS02

IS201

IS301

IS01

IS200

IS300

IS00

ID

ID1

ID2

IE

IE1IE0

IE2

IV

IV0 IV1

IV2

IL

IL0 IL1IL3

IL2

IN

IN2

II

II0 II1

II2
Sat:

NP-complete
∈ P

Slide 17



A note on proof methods

For CardMinSat, the initial algebraic tools are not applicable, and we use advanced
algebraic tools (Schnoor&Schnoor 2008, Lagerkvist 2014).
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Application to Abduction
A propositional abduction problem P = (V ,H,M,T ), where:

V is a finite set of variables,
H ⊆ V is the set of hypotheses,
M ⊆ V is the set of manifestations and
T is a consistent theory in the form of a propositional formula.

A set S ⊆ H is a solution (also called explanation) to P if T ∪ S is consistent and
T ∪ S |= M holds.

Problem: Card-min-Relevance
Input: P = (V ,H,M,T ) and hypothesis h ∈ H.

Question: Is h relevant, i.e., does P admit a cardinality-minimal solution S such that
h ∈ S?
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Complexity of Card-min-Relevance

Problem: Card-min-Relevance
Input: PAP P = (V ,H,M,T ) and hypothesis h ∈ H.

Question: Is h relevant, i.e., does P admit a cardinality-minimal solution S such that
h ∈ S?

The Card-min-Relevance problem is:
ΘP

3 -complete in its full generality (Eiter and Gottlob, 1995)
ΘP

2 -complete in the Horn case (Eiter and Gottlob, 1995)
ΘP

2 -complete in the Krom case (C., Pichler, Woltran, 2018)
Here we prove that the Card-min-Relevance problem is ΘP

2 -complete in the affine case,
by a reduction from CardMinSat({x ⊕ y ⊕ z})
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Conclusion
The result is still a dichotomy, only membership in P and ΘP

2 -completeness arise,
nothing in between.

Future Work
Address systematic complexity classifications for the related problems from belief
revision and abduction.
Consider parametrized complexity. For Abduction a lot is already done here, but
the abduction relevance problem based on cardinality-minimality is a blind spot,
even in classic complexity. CardMinSat will help advance here.

Thanks!
And thanks to our sponsor: CIRM, Research in pairs 1886.

Slide 21



Conclusion
The result is still a dichotomy, only membership in P and ΘP

2 -completeness arise,
nothing in between.

Future Work
Address systematic complexity classifications for the related problems from belief
revision and abduction.
Consider parametrized complexity. For Abduction a lot is already done here, but
the abduction relevance problem based on cardinality-minimality is a blind spot,
even in classic complexity. CardMinSat will help advance here.

Thanks!
And thanks to our sponsor: CIRM, Research in pairs 1886.

Slide 21


	New Results

