Complexity of Reasoning with Cardinality Minimality Conditions

Nadia Creignou ${ }^{1}$ Frédéric Olive ${ }^{1}$ Johannes Schmidt ${ }^{2}$

February, AAAI, 2023
Washington D.C.

[^0]
Structure of the Talk

11 The CardMinSat problem,
2 Preliminaries (propositional logic, constraint languages),
3 Complexity Results,
(4 Concluding Remarks.

The CardMinSat Problem

Problem: CardMinSat

Input: A propositional formula ϕ and a variable $x \in \operatorname{var}(\phi)$.
Question: Is x true in a cardinality-minimal model of ϕ ?

Cardinality-minimal model: a model with minimal number of variables assigned to 1 .

The CardMinSat Problem

Problem: CardMinSat

Input: A propositional formula ϕ and a variable $x \in \operatorname{var}(\phi)$. Question: Is x true in a cardinality-minimal model of ϕ ?

Cardinality-minimal model: a model with minimal number of variables assigned to 1 . CardMinSat is complete for the class Θ_{2}^{P} (Wagner 1988; C., Pichler, Woltran 2018). $\Theta_{2}^{\mathrm{P}}=\mathrm{P}^{\mathrm{NP}[O(\log n)]}=$ polynomial with a logarithmic number of calls to an NP-oracle. $N P \subseteq \Theta_{2}^{P} \subseteq P^{N P} \subseteq N P^{N P}$

The CardMinSat Problem - relevance to AI

Many AI-related reasoning problems use some notion of minimality. For instance

- Belief revision. Principle: minimal change
- Abduction.

Minimal explanations, relevance problems.
When cardinality-minimality is chosen as minimality criterion, all these problems are closely related to CardMinSat.

The CardMinSat Problem - relevance to AI

Many AI-related reasoning problems use some notion of minimality. For instance

- Belief revision. Principle: minimal change
- Abduction.

Minimal explanations, relevance problems.
When cardinality-minimality is chosen as minimality criterion, all these problems are closely related to CardMinSat.

Conducting a (more) detailed complexity analysis of CardMinSat can therefore advance our understanding of these problems' complexity.

The CardMinSat Problem - detailed complexity analysis

Consider CardMinSat in fragments of propositional logic in Schaefer's framework.
This will cover well-known fragments such as Horn, Krom, affine, and many more.

Relational Algebra

Definition

- A logical relation of arity k is a relation $R \subseteq\{0,1\}^{k}$.

Example (logical relation)

 $N=\{0,1\}^{3} \backslash\{000,111\}$, a relation of arity 3.
Relational Algebra

Definition

- A logical relation of arity k is a relation $R \subseteq\{0,1\}^{k}$.
- A constraint C over R is a formula $C=R\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}^{\prime} s$ are variables.

Example (constraint)

$C=N\left(x_{1}, x_{2}, x_{3}\right)$

Relational Algebra

Definition

- A logical relation of arity k is a relation $R \subseteq\{0,1\}^{k}$.
- A constraint C over R is a formula $C=R\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}^{\prime} s$ are variables.
- An assignment σ to the x_{i} 's satisfies C if $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right) \in R$.

Example (assignment satisfies constraint)

$\{011\} \models N\left(x_{1}, x_{2}, x_{3}\right), \quad\{111\} \not \models N\left(x_{1}, x_{2}, x_{3}\right)$.

Relational Algebra

Definition

- A logical relation of arity k is a relation $R \subseteq\{0,1\}^{k}$.
- A constraint C over R is a formula $C=R\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}^{\prime} s$ are variables.
- An assignment σ to the x_{i} 's satisfies C if $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right) \in R$.
- A constraint language Γ is a finite set of logical relations.

Example (constraint language)

$\Gamma=\{N, E, D\}=\left\{\{0,1\}^{3} \backslash\{000,111\},\{00,11\},\{10,01\}\right\}$.

Relational Algebra

Definition

- A logical relation of arity k is a relation $R \subseteq\{0,1\}^{k}$.
- A constraint C over R is a formula $C=R\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}^{\prime} s$ are variables.
- An assignment σ to the x_{i}^{\prime} 's satisfies C if $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right) \in R$.
- A constraint language Γ is a finite set of logical relations.
- A -formula is a finite conjunction of constraints over relations in Γ.

Example (Γ-formula)

$N(x, y, z) \wedge E(x, y) \wedge D(x, z)$ where $N, E, D \in \Gamma$.

Relational Algebra

Definition

- A logical relation of arity k is a relation $R \subseteq\{0,1\}^{k}$.
- A constraint C over R is a formula $C=R\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}^{\prime} s$ are variables.
- An assignment σ to the x_{i}^{\prime} 's satisfies C if $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right) \in R$.
- A constraint language Γ is a finite set of logical relations.
- $\mathrm{A} \Gamma$-formula is a finite conjunction of constraints over relations in Γ.
- An assignment σ satisfies an 「-formula ϕ if σ satisfies every constraint in ϕ.

Example (assignment satisfies Γ-formula)

$\{001\} \models N(x, y, z) \wedge E(x, y) \wedge D(x, z)$.

Problems in Schaefer's framework

Problem: SAT(Г)
Input: A Г-formula ϕ
Question: Is ϕ satisfiable?

Problem: CardMinSat(Г)
Input: A Γ-formula ϕ and a variable $x \in \operatorname{var}(\phi)$
Question: Is x true in a cardinality-minimal model of ϕ ?

Specific Constraint Languages

A k-ary relation R is represented by a formula ϕ in CNF if ϕ is a formula over k distinct variables x_{1}, \ldots, x_{k} and $\phi \equiv R\left(x_{1}, \ldots, x_{k}\right)$.

Example

- $E(x, y) \equiv(x+y)=0 \equiv(\bar{x} \vee y) \wedge(x \vee \bar{y})$
- $D(x, y) \equiv(x+y=1) \equiv(x \vee y) \wedge(\bar{x} \vee \bar{y})$
- $N(x, y, z) \equiv(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

Specific Constraint Languages

A k-ary relation R is represented by a formula ϕ in CNF if ϕ is a formula over k distinct variables x_{1}, \ldots, x_{k} and $\phi \equiv R\left(x_{1}, \ldots, x_{k}\right)$.

A relation R is

- Horn, dualHorn, Krom, 0/1-valid, if ϕ is so.
- Krom, if ϕ is a 2 -CNF formula.
- Affine, if ϕ is a conjunction of linear equations (over $\{0,1\}$).
- Width-2-affine, if ϕ is a conjunction of linear equations of size two, i.e., $(x \neq y),(x=y)$.

Specific Constraint Languages

Example

- $E(x, y) \equiv(x+y=0) \equiv(\bar{x} \vee y) \wedge(x \vee \bar{y})$
E is width-2-affine, Krom, Horn, 0 and 1-valid.

Specific Constraint Languages

Example

- $E(x, y) \equiv(x+y=0) \equiv(\bar{x} \vee y) \wedge(x \vee \bar{y})$
E is width-2-affine, Krom, Horn, 0 and 1-valid.
- $D(x, y) \equiv(x+y=1) \equiv(x \vee y) \wedge(\bar{x} \vee \bar{y})$
D is width-2-affine, Krom, but not Horn (01,10 are models but 00 is not).

Specific Constraint Languages

Example

- $E(x, y) \equiv(x+y=0) \equiv(\bar{x} \vee y) \wedge(x \vee \bar{y})$
E is width-2-affine, Krom, Horn, 0 and 1-valid.
- $D(x, y) \equiv(x+y=1) \equiv(x \vee y) \wedge(\bar{x} \vee \bar{y})$
D is width-2-affine, Krom, but not Horn (01,10 are models but 00 is not).
- $N(x, y, z) \equiv(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$
N is not affine, not Krom, not Horn

Schaefer's Dichotomy Theorem (STOC 1978)

Theorem

$\operatorname{SAT}(\Gamma)$ is in P if Γ is Horn, dual Horn, Krom, affine or 0- or 1-valid, and NP-complete otherwise.

A note on proof methods

- In 1978 Schaefer's Theorem was proven via many case distinctions.
- In the late 90's tools from universal algebra simplified the proof significantly (Jeavons 1998).
- The expressivity of a relation is characterized by the closure properties of its set of models.
- Closure functions sets are clones, described by Post's lattice.
- Complexity results for $\operatorname{SAT}(\Gamma)$ can be obtained through a systematic examination of Post's lattice.

Slide 13

Slide 14

New Results

Main Theorem

Problem: CardMinSat($\boldsymbol{\Gamma}$)

Input: A Γ-formula ϕ and a variable $x \in \operatorname{var}(\phi)$
Question: Is x true in a cardinality-minimal model of ϕ ?

Theorem

CardMinSat(Γ) in P if Γ is width-2-affine or Horn or 0 -valid, and $\boldsymbol{\Theta}_{2}^{\mathrm{P}}$-complete otherwise.

Slide 17

A note on proof methods

For CardMinSat, the initial algebraic tools are not applicable, and we use advanced algebraic tools (Schnoor\&Schnoor 2008, Lagerkvist 2014).

Application to Abduction

A propositional abduction problem $\mathcal{P}=(V, H, M, T)$, where:

- V is a finite set of variables,
- $H \subseteq V$ is the set of hypotheses,
- $M \subseteq V$ is the set of manifestations and
- T is a consistent theory in the form of a propositional formula.

A set $\mathcal{S} \subseteq H$ is a solution (also called explanation) to \mathcal{P} if $T \cup \mathcal{S}$ is consistent and $T \cup \mathcal{S} \models M$ holds.

Problem: Card-min-Relevance
Input: $\mathcal{P}=(V, H, M, T)$ and hypothesis $h \in H$.
Question: Is h relevant, i.e., does \mathcal{P} admit a cardinality-minimal solution \mathcal{S} such that $h \in \mathcal{S}$?

Complexity of Card-min-Relevance

Problem: Card-min-Relevance

Input: $\operatorname{PAP} \mathcal{P}=(V, H, M, T)$ and hypothesis $h \in H$.
Question: Is h relevant, i.e., does \mathcal{P} admit a cardinality-minimal solution \mathcal{S} such that $h \in \mathcal{S}$?

The Card-min-Relevance problem is:

- Θ_{3}^{P}-complete in its full generality (Eiter and Gottlob, 1995)
- Θ_{2}^{P}-complete in the Horn case (Eiter and Gottlob, 1995)
$=\Theta_{2}^{\mathrm{P}}$-complete in the Krom case (C., Pichler, Woltran, 2018)
Here we prove that the Card-min-Relevance problem is Θ_{2}^{P}-complete in the affine case, by a reduction from CardMinSat $(\{x \oplus y \oplus z\})$

Conclusion

- The result is still a dichotomy, only membership in P and Θ_{2}^{P}-completeness arise, nothing in between.

Future Work

- Address systematic complexity classifications for the related problems from belief revision and abduction.
- Consider parametrized complexity. For Abduction a lot is already done here, but the abduction relevance problem based on cardinality-minimality is a blind spot, even in classic complexity. CardMinSat will help advance here.

Conclusion

- The result is still a dichotomy, only membership in P and Θ_{2}^{P}-completeness arise, nothing in between.

Future Work

- Address systematic complexity classifications for the related problems from belief revision and abduction.
- Consider parametrized complexity. For Abduction a lot is already done here, but the abduction relevance problem based on cardinality-minimality is a blind spot, even in classic complexity. CardMinSat will help advance here.

() Thanks! :)

And thanks to our sponsor: CIRM, Research in pairs 1886.

[^0]: ${ }^{1}$ Aix-Marseille Université, France
 ${ }^{2}$ Jönköping University, Sweden, Speaker

