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General context: learning how to reason

SAT, CSP, CFN, MRF, ...
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costs, energies, ...

— Satisfy the constraints, minimize
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Qhe criteria
Not ob: d
of observe Solution

Observable
Goal: solve new natural-input instances without access to the
discrete model parameters

Learn to predict the underlying constraints & criteria
Decision-focused learning
How? By interfacing two branches of Al:

Deep Learning (DL)
Discrete reasoning (Weighted Constraint Satisfaction Problem, WCSP)
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ZOOIﬂ on the Su Oku t0y pI’Ob|em (Brouard, Givry, and Schiex 2020)

Aim: learning a representation of the Sudoku rules
Data: (initial grid, solved grid)
Rules (cost functions) are unknown
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Zoom on the Sudoku toy pr0b|em (Brouard, Givry, and Schiex 20

Aim: learning a representation of the Sudoku rules
Data: (initial grid, solved grid)
Rules (cost functions) are unknown
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Difficulty: discrete objectlve vs gradient descent
VL is either 0 or non-existant
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Extracting meaningful gradients

> Differentiable & informative upper bound of L: Hinge
loss (Altun, McAllester, and Belkin 2005)

> Continuous interpolation of L: Blackbox (Poganci¢ et al. 2019)

> Exact solving during inference
> Training cost: each instance is a NP-hard problem

Continuous relaxation of the problem

> SATNet (Wang et al. 2019)

> Tractable differentiable optimization layer

> Approximate solving
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lllustration on the Sudoku

Approach  Characteristic Acc. Grids  Training set
RRN*  Pure DL 96.6% Hard 180,000
SATNet Relaxation 99.8% Easy 9,000
Hinge Extract gradients 100%  Hard 1,000

* Recurrent Relational Net (Paim, Paquet, and Winther 2018)
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Approach  Characteristic Acc. Grids  Training set

RRN*  Pure DL 96.6% Hard 180,000
SATNet Relaxation 99.8% Easy 9,000
Hinge Extract gradients 100%  Hard 1,000

* Recurrent Relational Net (Paim, Paquet, and Winther 2018)

Training with the Hinge loss

> VI ~ (}7 — _y) ~ (Sahoo et al. 2023)
> y solution of the predicted discrete problem
> Tuning the solver is challenging

> L1 regularization on costs
> Random initialization — random discrete problems

> Easier problem (20 variables to predict) on first epochs

> 2-3 days of training — intractable on bigger instances
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2-stage approach: learning before optimizing

How to assess the learned discrete problem without solving it?
Pseudo-log likelihood (Besag 1975): — 3", log P(yily—i)

Cost
functions
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2-stage approach: learning before optimizing

How to assess the learned discrete problem without solving it?
Pseudo-log likelihood (Besag 1975): — 3", log P(yily—i)

Cost
functions
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Fails on 100% of test grids
Interpreting the learned model: partial constraints are learned
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2-stage approach with the Emmental-PLL (E-PLL)

Cost
functions
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PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023)*
E-PLL: — ), log P(yily—(ium(y))

"Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). “Scalable Coupling of Deep Learning with
Logical Reasoning”. In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI’2023.
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2-stage approach with the Emmental-PLL (E-PLL)

Cost
a2 functions
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PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023)*
E-PLL: — ), log P(yily—(ium(y))

il

Approach  Acc. Train set Train time Redundant
constraints

Embedded solver 100% 1000 2-3 days no
E-PLL 100% 200 15 min  yes

Restricted usage: solver after neural layers & fixed loss

"Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). “Scalable Coupling of Deep Learning with
Logical Reasoning”. In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI’2023.
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Learning One-of-Many solution (nvandwani et a1 202172
<) (

Dataset: Sudoku grids with multiple solutions
Incomplete information: at most 5 solutions are observed

Task: Predicting one of the solutions
Pure DL: which loss?

Approach  SelectR! E-PLL
Accuracy 86.7%  100%

With the E-PLL, the correct rules are learned
All the solutions can be enumerated by the solver

2Yatin Nandwani et al. (2021). “Neural Learning of One-of-Many Solutions for Combinatorial Problems in
Structured Output Spaces”. In: International Conference on Learning Representations, ICLR'21. URI
https://openreview.net/forum?id=ATpinW2FuZL.
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https://openreview.net/forum?id=ATp1nW2FuZL

Visual sudoku

> Learn to play Sudoku & to recognize digit

Unary cost
functions
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> Solver able to correct digit mis-classification

SATNet Theoretical Ours
(no corrections)
63.2 % 74.2% 94.1 +0.8%

p.9
TOULOUSE "




Learning the laws of protein design

Cost function = pairwise interaction score (Traoré et al. 2013)

> Main changes:
o Train set up to 10,000 variables, variable size
o Energy conditioned by the input structure
o One-of-Many solution setting
> Intractable inference — use an approximate
solver (Durante, Katsirelos, and Schiex 2022)

> Outperforms existing decomposable score functions

SSNAIGLIETKGYVAA..

Rosettal Our
Similarity (1) 17.9% 27.8%

LPark et al. 2016
]
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Hybridizing automated reasoning and ML  vs. pure DL

> Data-efficiency
> Interpretability

> A posteriori control (adding constraints or criteria)

Perspective: protein design

> Scalable method required
> Applied projects
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