Scalable Coupling of Deep Learning with Logical Reasoning

Accepted at IJCAI2023
PFIA'23

Marianne Defresne (TBI, MIAT), Thomas Schiex (MIAT)

RÉPUBLIQUE FRANÇAISE

INRAQ NSAN
Ma

General context: learning how to reason

- Goal: solve new natural-input instances without access to the discrete model parameters
$>$ Learn to predict the underlying constraints \& criteria
$>$ Decision-focused learning
- How? By interfacing two branches of AI:
> Deep Learning (DL)
$>$ Discrete reasoning (Weighted Constraint Satisfaction Problem, WCSP)
- Aim: learning a representation of the Sudoku rules
$>$ Data: (initial grid, solved grid)
$>$ Rules (cost functions) are unknown

- Aim: learning a representation of the Sudoku rules
> Data: (initial grid, solved grid)
$>$ Rules (cost functions) are unknown

Aiming to minimize the decision error

$$
L=\operatorname{Hamming}(y, \hat{y})=\frac{1}{81} \sum_{i=1}^{81} \mathbb{1}\left[y_{i} \neq \hat{y}_{i}\right] \quad \quad-\infty_{-}^{-}
$$

$>$ Difficulty: discrete objective vs gradient descent

- ∇L is either 0 or non-existant
intbi
Toulouse Biotechnology Institute Bio \& Chemical Engineering

The solver embedded as a neural layer

Extracting meaningful gradients

$>$ Differentiable \& informative upper bound of L : Hinge loss (Altun, McAllester, and Belkin 2005)
$>$ Continuous interpolation of L: Blackbox (Pogančić et al. 2019)

- Exact solving during inference
- Training cost: each instance is a NP-hard problem

Continuous relaxation of the problem

$>$ SATNet (Wang et al. 2019)

- Tractable differentiable optimization layer
- Approximate solving

Illustration on the Sudoku

Approach	Characteristic	Acc.	Grids	Training set
RRN*	Pure DL	96.6%	Hard	180,000
SATNet	Relaxation	99.8%	Easy	9,000
Hinge	Extract gradients	$\mathbf{1 0 0 \%}$	Hard	1,000

* Recurrent Relational Net (Palm, Paquet, and Winther 2018)

Illustration on the Sudoku

Approach	Characteristic	Acc.	Grids	Training set
RRN	Pure DL	96.6%	Hard	180,000
SATNet	Relaxation	99.8%	Easy	9,000
Hinge	Extract gradients	$\mathbf{1 0 0 \%}$	Hard	1,000

* Recurrent Relational Net (Palm, Paquet, and Winther 2018)

Training with the Hinge loss

- $\nabla L \approx(\hat{y}-y)$
\sim (Sahoo et al. 2023)
$>\hat{y}$ solution of the predicted discrete problem
- Tuning the solver is challenging
$>\mathrm{L} 1$ regularization on costs
$>$ Random initialization \rightarrow random discrete problems
- Easier problem (20 variables to predict) on first epochs
- 2-3 days of training \rightarrow intractable on bigger instances

2-stage approach: learning before optimizing

- How to assess the learned discrete problem without solving it?
$>$ Pseudo-log likelihood (Besag 1975): $-\sum_{i} \log P\left(y_{i} \mid y_{-i}\right)$

2-stage approach: learning before optimizing

- How to assess the learned discrete problem without solving it?
$>$ Pseudo-log likelihood (Besag 1975): $-\sum_{i} \log P\left(y_{i} \mid y_{-i}\right)$

- Fails on 100% of test grids
> Interpreting the learned model: partial constraints are learned

itbí
sulouse Biotechnology Ingtitute Bio \& Chemical Engineering

2-stage approach with the Emmental-PLL (E-PLL)

Cost

- PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023) ${ }^{1}$ $>$ E-PLL: $-\sum_{i} \log P\left(y_{i} \mid y_{-(i \cup M(i))}\right)$

[^0]
2-stage approach with the Emmental-PLL (E-PLL)

- PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023) ${ }^{1}$ $>$ E-PLL: $-\sum_{i} \log P\left(y_{i} \mid y_{-(i \cup M(i))}\right)$

Approach Acc. Train set Train time Redundant constraints

Embedded solver	100%	1000	$2-3$ days	no
E-PLL	100%	200	15 min	yes

- Restricted usage: solver after neural layers \& fixed loss

[^1]tbi
Toulouse Biotechnology Institute Bio \& Chemical Engineering

Learning One-of-Many solution (Nandwani et al. 2021)²

- Dataset: Sudoku grids with multiple solutions
$>$ Incomplete information: at most 5 solutions are observed
- Task: Predicting one of the solutions
- Pure DL: which loss?

Approach	SelectR 1	E-PLL
Accuracy	86.7%	$\mathbf{1 0 0 \%}$

- With the E-PLL, the correct rules are learned
$>$ All the solutions can be enumerated by the solver

[^2]thi
sulbuse Biotechnology ingtitut Bio \& Chemical Engineering

Application on natural-input problems

Visual sudoku

$>$ Learn to play Sudoku \& to recognize digit

- Solver able to correct digit mis-classification

SATNet	Theoretical (no corrections)	Ours
63.2%	74.2%	$\mathbf{9 4 . 1} \pm 0.8 \%$

10 1 Bio \& Chemical Engineering

Application on natural-input problems

Learning the laws of protein design

Cost function = pairwise interaction score (Traoré et al. 2013)
$>$ Main changes:

- Train set up to 10,000 variables, variable size
- Energy conditioned by the input structure
- One-of-Many solution setting
$>$ Intractable inference \rightarrow use an approximate solver (Durante, Katsirelos, and Schiex 2022)
$>$ Outperforms existing decomposable score functions

$$
\text { Rosetta }^{1} \quad \text { Our }
$$

$$
\text { Similarity (} \uparrow \text {) } \quad 17.9 \% \quad 27.8 \%
$$

[^3]
Conclusion \& perspectives

Hybridizing automated reasoning and ML vs. pure DL

$>$ Data-efficiency
> Interpretability
$>$ A posteriori control (adding constraints or criteria)

Perspective: protein design

$>$ Scalable method required
> Applied projects

- The organizers of PFIA'23
- My PhD supervisors: Sophie Barbe and Thomas Schiex
- My teams in TBI and MIAT
- CALMIP \& IDRIS \& GenoToul for computational resources

Thanks for your attention!

ANITI
ARTIFICAL \& NATURAL INTELLIGENCE
TOULOUSE INSTITUTE

This work has been supported by the Agence Nationale de la Recherche (ANR) [grant ANR-18-EURE-0021]

- Altun, Yasemin, David McAllester, and Mikhail Belkin (2005). "Maximum margin semi-supervised learning for structured variables". In: Advances in neural information processing systems 18.
國 Besag, Julian (1975). "Statistical Analysis of Non-Lattice Data". In: Journal of the Royal Statistical Society: Series D (The Statistician) 24.3, pp. 179-195.
Brouard, Céline, Simon de Givry, and Thomas Schiex (2020). "Pushing Data into CP Models Using Graphical Model Learning and Solving". In: International Conference on Principles and Practice of Constraint Programming. Springer, pp. 811-827.

國 Defresne，Marianne，Sophie Barbe，and Thomas Schiex（2023）． ＂Scalable Coupling of Deep Learning with Logical Reasoning＂． In：Thirty－second International Joint Conference on Artificial Intelligence，IJCAl＇2023．
國 Durante，Valentin，George Katsirelos，and Thomas Schiex（July 2022）．＂Efficient low rank convex bounds for pairwise discrete Graphical Models＂．In：Thirty－ninth International Conference on Machine Learning．
围 Nandwani，Yatin et al．（2021）．＂Neural Learning of One－of－Many Solutions for Combinatorial Problems in Structured Output Spaces＂．In：International Conference on Learning Representations，ICLR＇21．URL： https：／／openreview．net／forum？id＝ATp1nW2FuZL．

Ralm, Rasmus, Ulrich Paquet, and Ole Winther (2018). "Recurrent Relational Networks". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc.
國 Park, Hahnbeom et al. (2016). "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: Journal of Chemical Theory and Computation 12.12, pp. 6201-6212.
R Pogančić, Marin Vlastelica et al. (2019). "Differentiation of blackbox combinatorial solvers". In: International Conference on Learning Representations.

- Sahoo, Subham Sekhar et al. (2023). "Backpropagation through Combinatorial Algorithms: Identity with Projection Works". In: Proc. of ICLR'23. url:
https://arxiv.org/abs/2205.15213.
Traoré, Seydou et al. (July 2013). "A new framework for computational protein design through cost function network optimization". In: Bioinformatics 29.17, pp. 2129-2136. ISSN: 1367-4803.
國 Wang, Po-Wei et al. (2019). "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, pp. 6545-6554.

[^0]: ${ }^{1}$ Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023.

[^1]: ${ }^{1}$ Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023.

[^2]: ${ }^{2}$ Yatin Nandwani et al. (2021). "Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces". In: International Conference on Learning Representations, ICLR'21. URL:
 https://openreview.net/forum?id=ATp1nW2FuZL.

[^3]: ${ }^{1}$ Park et al. 2016

