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General context: learning how to reason

▶ Goal: solve new natural-input instances without access to the
discrete model parameters

> Learn to predict the underlying constraints & criteria
> Decision-focused learning

▶ How? By interfacing two branches of AI:

> Deep Learning (DL)
> Discrete reasoning (Weighted Constraint Satisfaction Problem, WCSP)
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Zoom on the Sudoku toy problem (Brouard, Givry, and Schiex 2020)

▶ Aim: learning a representation of the Sudoku rules
> Data: (initial grid, solved grid)
> Rules (cost functions) are unknown

Aiming to minimize the decision error

L = Hamming(y , ŷ) =
1

81

81∑
i=1

1[yi ̸= ŷi ]

> Difficulty: discrete objective vs gradient descent
o ∇L is either 0 or non-existant
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The solver embedded as a neural layer

Extracting meaningful gradients

> Differentiable & informative upper bound of L: Hinge
loss (Altun, McAllester, and Belkin 2005)

> Continuous interpolation of L: Blackbox (Pogančić et al. 2019)

▶ Exact solving during inference

▶ Training cost: each instance is a NP-hard problem

Continuous relaxation of the problem

> SATNet (Wang et al. 2019)

▶ Tractable differentiable optimization layer

▶ Approximate solving
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Illustration on the Sudoku

Approach Characteristic Acc. Grids Training set

RRN∗ Pure DL 96.6% Hard 180,000
SATNet Relaxation 99.8% Easy 9,000
Hinge Extract gradients 100% Hard 1,000

∗ Recurrent Relational Net (Palm, Paquet, and Winther 2018)

Training with the Hinge loss

▶ ∇L ≈ (ŷ − y) ∼ (Sahoo et al. 2023)

> ŷ solution of the predicted discrete problem

▶ Tuning the solver is challenging

> L1 regularization on costs
> Random initialization → random discrete problems

▶ Easier problem (20 variables to predict) on first epochs

▶ 2-3 days of training → intractable on bigger instances
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▶ ∇L ≈ (ŷ − y) ∼ (Sahoo et al. 2023)
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2-stage approach: learning before optimizing

▶ How to assess the learned discrete problem without solving it?

> Pseudo-log likelihood (Besag 1975): −
∑

i log P(yi |y−i )

▶ Fails on 100% of test grids
> Interpreting the learned model: partial constraints are learned
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2-stage approach with the Emmental-PLL (E-PLL)

▶ PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023)1

> E-PLL: −
∑

i log P(yi |y−(i∪M(i)))

Approach Acc. Train set Train time Redundant
constraints

Embedded solver 100% 1000 2-3 days no
E-PLL 100% 200 15 min yes

▶ Restricted usage: solver after neural layers & fixed loss

1Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). “Scalable Coupling of Deep Learning with
Logical Reasoning”. In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI’2023.
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Learning One-of-Many solution (Nandwani et al. 2021)2

▶ Dataset: Sudoku grids with multiple solutions

> Incomplete information: at most 5 solutions are observed

▶ Task: Predicting one of the solutions

▶ Pure DL: which loss?

Approach SelectR1 E-PLL

Accuracy 86.7% 100%

▶ With the E-PLL, the correct rules are learned

> All the solutions can be enumerated by the solver

2Yatin Nandwani et al. (2021). “Neural Learning of One-of-Many Solutions for Combinatorial Problems in
Structured Output Spaces”. In: International Conference on Learning Representations, ICLR’21. url:
https://openreview.net/forum?id=ATp1nW2FuZL.
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Application on natural-input problems

Visual sudoku

> Learn to play Sudoku & to recognize digit

▶ Solver able to correct digit mis-classification

SATNet Theoretical
(no corrections)

Ours

63.2 % 74.2% 94.1± 0.8%
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Application on natural-input problems

Learning the laws of protein design

Cost function = pairwise interaction score (Traoré et al. 2013)

> Main changes:

o Train set up to 10,000 variables, variable size
o Energy conditioned by the input structure
o One-of-Many solution setting

> Intractable inference → use an approximate
solver (Durante, Katsirelos, and Schiex 2022)

> Outperforms existing decomposable score functions

Rosetta1 Our

Similarity (↑) 17.9% 27.8%

1Park et al. 2016
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Conclusion & perspectives

Hybridizing automated reasoning and ML vs. pure DL

> Data-efficiency

> Interpretability

> A posteriori control (adding constraints or criteria)

Perspective: protein design

> Scalable method required

> Applied projects
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