Scalable Coupling of Deep Learning with Logical Reasoning

Accepted at IJCAI2023 PFIA'23

Marianne Defresne (TBI, MIAT), Thomas Schiex (MIAT) and Sophie Barbe (TBI)

marianne.defresne@insa-toulouse.fr

July, 5th 2023

General context: learning how to reason

Goal: solve new natural-input instances without access to the discrete model parameters

- > Learn to predict the underlying constraints & criteria
- > Decision-focused learning

How? By interfacing two branches of AI:

- Deep Learning (DL)
 Discrete reasoning (Weighted Constraint Satisfaction Problem, WCSP)

Zoom on the Sudoku toy problem (Brouard, Givry, and Schiex 2020)

Aim: learning a representation of the Sudoku rules

- > Data: (initial grid, solved grid)
- > Rules (cost functions) are unknown

Zoom on the Sudoku toy problem (Brouard, Givry, and Schiex 2020)

Aim: learning a representation of the Sudoku rules

- > Data: (initial grid, solved grid)
- > Rules (cost functions) are unknown

Aiming to minimize the decision error

$$L = Hamming(y, \hat{y}) = \frac{1}{81} \sum_{i=1}^{81} \mathbb{1}[y_i \neq \hat{y}_i]$$

> Difficulty: discrete objective vs gradient descent

o ∇L is either 0 or non-existant

The solver embedded as a neural layer

Extracting meaningful gradients

- Differentiable & informative upper bound of L: Hinge loss (Altun, McAllester, and Belkin 2005)
- > Continuous interpolation of L: Blackbox (Pogančić et al. 2019)
- Exact solving during inference
 - Training cost: each instance is a NP-hard problem

Continuous relaxation of the problem

- > SATNet (Wang et al. 2019)
- Tractable differentiable optimization layer
- Approximate solving

Illustration on the Sudoku

Approach	Characteristic	Acc.	Grids	Training set
RRN *	Pure DL	96.6%	Hard	180,000
SATNet	Relaxation	99.8%	Easy	9,000
Hinge	Extract gradients	100%	Hard	1,000

* Recurrent Relational Net (Palm, Paquet, and Winther 2018)

Illustration on the Sudoku

Approach	Characteristic	Acc.	Grids	Training set
RRN *	Pure DL	96.6%	Hard	180,000
SATNet	Relaxation	99.8%	Easy	9,000
Hinge	Extract gradients	100%	Hard	1,000

* Recurrent Relational Net (Palm, Paquet, and Winther 2018)

2-stage approach: learning before optimizing

How to assess the learned discrete problem without solving it?

> Pseudo-log likelihood (Besag 1975): $-\sum_{i} \log P(y_i|y_{-i})$

2-stage approach: learning before optimizing

How to assess the learned discrete problem without solving it?

> Pseudo-log likelihood (Besag 1975): $-\sum_{i} \log P(y_i|y_{-i})$

Fails on 100% of test grids

> Interpreting the learned model: partial constraints are learned

2-stage approach with the Emmental-PLL (E-PLL)

▶ PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023)¹ > **E-PLL**: $-\sum_{i} \log P(y_i | y_{-(i \cup M(i))})$

¹Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023.

2-stage approach with the Emmental-PLL (E-PLL)

▶ PLL enhanced to learn constraint (Defresne, Barbe, and Schiex 2023)¹ > **E-PLL**: $-\sum_{i} \log P(y_i | y_{-(i \cup M(i))})$

Approach	Acc.	Train set	Train time	Redundant constraints
Embedded solver		1000	2-3 days	no
E-PLL		200	15 min	yes

Restricted usage: solver after neural layers & fixed loss

¹Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023.

Learning One-of-Many solution (Nandwani et al. 2021)²

Dataset: Sudoku grids with multiple solutions

 Incomplete information: at most 5 solutions are observed

 Task: Predicting one of the solutions

Pure DL: which loss?

Approach	${\sf Select}{\sf R}^1$	E-PLL
Accuracy	86.7%	100%

With the E-PLL, the correct rules are learned
 All the solutions can be enumerated by the solver

²Yatin Nandwani et al. (2021). "Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces". In: *International Conference on Learning Representations, ICLR'21*. URL: https://openreview.net/forum?id=ATp1nW2FuZL.

Application on natural-input problems

Visual sudoku

> Learn to play Sudoku & to recognize digit

Solver able to correct digit mis-classification

SATNet	Theoretical	Ours
	(no corrections)	
63.2 %	74.2%	$\textbf{94.1} \pm 0.8\%$

Application on natural-input problems

Learning the laws of protein design

Cost function = pairwise interaction score (Traoré et al. 2013)

- > Main changes:
 - o Train set up to 10,000 variables, variable size
 - o Energy conditioned by the input structure
 - o One-of-Many solution setting
- > Intractable inference → use an approximate solver (Durante, Katsirelos, and Schiex 2022)
- > Outperforms existing decomposable score functions

	$Rosetta^1$	Our
Similarity (↑)	17.9%	27.8%

¹Park et al. 2016

Hybridizing automated reasoning and ML vs. pure DL

- > Data-efficiency
- > Interpretability
- > A posteriori control (adding constraints or criteria)

Perspective: protein design

- > Scalable method required
- > Applied projects

Acknowledgment

- The organizers of PFIA'23
- My PhD supervisors: Sophie Barbe and Thomas Schiex
- My teams in TBI and MIAT
- CALMIP & IDRIS & GenoToul for computational resources

Thanks for your attention!

This work has been supported by the Agence Nationale de la Recherche (ANR) [grant ANR-18-EURE-0021]

References I

- Altun, Yasemin, David McAllester, and Mikhail Belkin (2005). "Maximum margin semi-supervised learning for structured variables". In: *Advances in neural information processing systems* 18.
- Besag, Julian (1975). "Statistical Analysis of Non-Lattice Data". In: Journal of the Royal Statistical Society: Series D (The Statistician) 24.3, pp. 179–195.
- Brouard, Céline, Simon de Givry, and Thomas Schiex (2020). "Pushing Data into CP Models Using Graphical Model Learning and Solving". In: International Conference on Principles and Practice of Constraint Programming. Springer, pp. 811–827.

References II

- Defresne, Marianne, Sophie Barbe, and Thomas Schiex (2023).
 "Scalable Coupling of Deep Learning with Logical Reasoning".
 In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023.
- Durante, Valentin, George Katsirelos, and Thomas Schiex (July 2022). "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: *Thirty-ninth International Conference on Machine Learning*.
- Nandwani, Yatin et al. (2021). "Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces". In: International Conference on Learning Representations, ICLR'21. URL: https://openreview.net/forum?id=ATp1nW2FuZL.

References III

- Palm, Rasmus, Ulrich Paquet, and Ole Winther (2018).
 "Recurrent Relational Networks". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc.
- Park, Hahnbeom et al. (2016). "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: *Journal of Chemical Theory and Computation* 12.12, pp. 6201–6212.
- Pogančić, Marin Vlastelica et al. (2019). "Differentiation of blackbox combinatorial solvers". In: International Conference on Learning Representations.

References IV

Sahoo, Subham Sekhar et al. (2023). "Backpropagation through Combinatorial Algorithms: Identity with Projection Works". In: *Proc. of ICLR'23*. URL:

https://arxiv.org/abs/2205.15213.

- Traoré, Seydou et al. (July 2013). "A new framework for computational protein design through cost function network optimization". In: *Bioinformatics* 29.17, pp. 2129–2136. ISSN: 1367-4803.
- Wang, Po-Wei et al. (2019). "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, pp. 6545–6554.

