
1

Reasoning about Knowledge

• Epistemic logic usually consists of a modal language which
can express “an agent knows that ϕ”. [Hintikka, Book 1962]

• During decades, research on epistemic logics focuses on
knowledge expressed by “knowing that”.

• “knowing that” is the most common knowledge notion studied
in epistemic logics, but many others are interesting such as

– “knowing how”,
– “knowing why”,
– “knowing what”,
etc.

2

Reasoning about Knowledge

• Epistemic logic usually consists of a modal language which
can express “an agent knows that ϕ”. [Hintikka, Book 1962]

• During decades, research on epistemic logics focuses on
knowledge expressed by “knowing that”.

• “knowing that” is the most common knowledge notion studied
in epistemic logics, but many others are interesting such as

– “knowing how”,
– “knowing why”,
– “knowing what”,
etc.

2

Knowing How

• Knowing how: epistemic notion related to the abilities of an
agent to achieve a goal.

• Examples of goal-directed “knowing how”:

– to know how to prove a theorem,
– to know how to open the door,
– to know how to bake a cake, etc.

• In the sequel, “knowing how” encoded by a single modality
interpreted as an ability to achieve a goal, e.g. Kh ϕ.

3

Knowing How

• Knowing how: epistemic notion related to the abilities of an
agent to achieve a goal.

• Examples of goal-directed “knowing how”:

– to know how to prove a theorem,
– to know how to open the door,
– to know how to bake a cake, etc.

• In the sequel, “knowing how” encoded by a single modality
interpreted as an ability to achieve a goal, e.g. Kh ϕ.

3

A Quick Tour on Epistemic Logics of Knowing How

• Introduction of a framework for knowing how logics.
[Wang, LORI’15; Wang, Synthese 2018]

– Logic with modality Kh(ϕ,ψ) (axiomatisation).
– Logic with modality Kh(ϕ,χ,ψ).
– Extension with announcement-like modality.

• Distinction between factual and epistemic information.

– Generalisation of Wang’s framework by re-introducing the
notion of epistemic indistinguishability (∼a on plans).

[Areces et al, TARK’21]

– Dynamic epistemic approach of knowing how (à la PAL).
[Areces et al, DaLi’22]

• Plan constraints in [Li, PhD 2017].

4

A Quick Tour on Epistemic Logics of Knowing How

• Introduction of a framework for knowing how logics.
[Wang, LORI’15; Wang, Synthese 2018]

– Logic with modality Kh(ϕ,ψ) (axiomatisation).
– Logic with modality Kh(ϕ,χ,ψ).
– Extension with announcement-like modality.

• Distinction between factual and epistemic information.

– Generalisation of Wang’s framework by re-introducing the
notion of epistemic indistinguishability (∼a on plans).

[Areces et al, TARK’21]

– Dynamic epistemic approach of knowing how (à la PAL).
[Areces et al, DaLi’22]

• Plan constraints in [Li, PhD 2017].

4

A Quick Tour on Epistemic Logics of Knowing How

• Introduction of a framework for knowing how logics.
[Wang, LORI’15; Wang, Synthese 2018]

– Logic with modality Kh(ϕ,ψ) (axiomatisation).
– Logic with modality Kh(ϕ,χ,ψ).
– Extension with announcement-like modality.

• Distinction between factual and epistemic information.

– Generalisation of Wang’s framework by re-introducing the
notion of epistemic indistinguishability (∼a on plans).

[Areces et al, TARK’21]

– Dynamic epistemic approach of knowing how (à la PAL).
[Areces et al, DaLi’22]

• Plan constraints in [Li, PhD 2017].

4

Wang’s Logic Lkh [Wang, LORI’15]

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | Kh(ϕ,ϕ)

s1p

s2 s3

q

s4

a

a

b

S = (S,(Ra)a∈Act,V)

– Non-empty set of states S.

– Collection of binary relations
(Ra)a∈Act.

– Labelling function V : S→ 2Prop.

– Kh(p,q): “the agent knows how to achieve the goal q,
whenever the initial condition p holds”.

– Plan-based “knowing how” (a.k.a. ability-based).

5

Plans

• In this talk, a plan σ is a finite sequence in Act∗.

• σ ∈ Act∗ is strongly executable (SE) at s ∈ S iff for all
k ∈ [0, |σ |−1] and t ∈ Rσ [0...k](s), we have Rσ(k+1)(t) ̸= /0.

“Each partial execution of the plan must be completed”

• SE(σ)
def
= {s ∈ S | σ is SE at s}.

6

Plans

• In this talk, a plan σ is a finite sequence in Act∗.

• σ ∈ Act∗ is strongly executable (SE) at s ∈ S iff for all
k ∈ [0, |σ |−1] and t ∈ Rσ [0...k](s), we have Rσ(k+1)(t) ̸= /0.

“Each partial execution of the plan must be completed”

• SE(σ)
def
= {s ∈ S | σ is SE at s}.

6

Wang’s Logic: Satisfaction Relation

• S ,s ⊩ p
def⇔ p ∈ V(s).

• S ,s ⊩ Kh(ϕ,ψ)
def⇔ there exists σ ∈ Act∗ such that

(1) σ is SE at every state satisfying ϕ,

(2) from every ϕ-state, executing σ always ends at ψ-states.

s1p

s2

r

s3

q

s4
r

a

a

b

S ,s1 ⊩ Kh(p,r)
- the plan a is SE s1 (the only p-state),
and takes the agent from p to r-states.

S ,s1 ̸⊩ Kh(p,q)
- ε and a: are SE at s1 (p-state),
but do not lead to q;
- ab is not SE at s1.

7

Wang’s Logic: Satisfaction Relation

• S ,s ⊩ p
def⇔ p ∈ V(s).

• S ,s ⊩ Kh(ϕ,ψ)
def⇔ there exists σ ∈ Act∗ such that

(1) σ is SE at every state satisfying ϕ,

(2) from every ϕ-state, executing σ always ends at ψ-states.

s1p

s2

r

s3

q

s4
r

a

a

b

S ,s1 ⊩ Kh(p,r)

- the plan a is SE s1 (the only p-state),
and takes the agent from p to r-states.

S ,s1 ̸⊩ Kh(p,q)
- ε and a: are SE at s1 (p-state),
but do not lead to q;
- ab is not SE at s1.

7

Wang’s Logic: Satisfaction Relation

• S ,s ⊩ p
def⇔ p ∈ V(s).

• S ,s ⊩ Kh(ϕ,ψ)
def⇔ there exists σ ∈ Act∗ such that

(1) σ is SE at every state satisfying ϕ,

(2) from every ϕ-state, executing σ always ends at ψ-states.

s1p

s2

r

s3

q

s4
r

a

a

b

S ,s1 ⊩ Kh(p,r)
- the plan a is SE s1 (the only p-state),
and takes the agent from p to r-states.

S ,s1 ̸⊩ Kh(p,q)
- ε and a: are SE at s1 (p-state),
but do not lead to q;
- ab is not SE at s1.

7

Wang’s Logic: Satisfaction Relation

• S ,s ⊩ p
def⇔ p ∈ V(s).

• S ,s ⊩ Kh(ϕ,ψ)
def⇔ there exists σ ∈ Act∗ such that

(1) σ is SE at every state satisfying ϕ,

(2) from every ϕ-state, executing σ always ends at ψ-states.

s1p

s2

r

s3

q

s4
r

a

a

b

S ,s1 ⊩ Kh(p,r)
- the plan a is SE s1 (the only p-state),
and takes the agent from p to r-states.

S ,s1 ̸⊩ Kh(p,q)

- ε and a: are SE at s1 (p-state),
but do not lead to q;
- ab is not SE at s1.

7

Wang’s Logic: Satisfaction Relation

• S ,s ⊩ p
def⇔ p ∈ V(s).

• S ,s ⊩ Kh(ϕ,ψ)
def⇔ there exists σ ∈ Act∗ such that

(1) σ is SE at every state satisfying ϕ,

(2) from every ϕ-state, executing σ always ends at ψ-states.

s1p

s2

r

s3

q

s4
r

a

a

b

S ,s1 ⊩ Kh(p,r)
- the plan a is SE s1 (the only p-state),
and takes the agent from p to r-states.

S ,s1 ̸⊩ Kh(p,q)
- ε and a: are SE at s1 (p-state),
but do not lead to q;

- ab is not SE at s1.

7

Wang’s Logic: Satisfaction Relation

• S ,s ⊩ p
def⇔ p ∈ V(s).

• S ,s ⊩ Kh(ϕ,ψ)
def⇔ there exists σ ∈ Act∗ such that

(1) σ is SE at every state satisfying ϕ,

(2) from every ϕ-state, executing σ always ends at ψ-states.

s1p

s2

r

s3

q

s4
r

a

a

b

S ,s1 ⊩ Kh(p,r)
- the plan a is SE s1 (the only p-state),
and takes the agent from p to r-states.

S ,s1 ̸⊩ Kh(p,q)
- ε and a: are SE at s1 (p-state),
but do not lead to q;
- ab is not SE at s1.

7

Decidability/Complexity Status

• Satisfiability problem is decidable. [Li, PhD 2017]

(use of model-checking from a small model)

• Hilbert-style axiomatisation. [Wang, Synthese 2018]

• Complexity of satisfiability and model-checking not studied.

8

Our Motivations

• Knowing how with regularity constraints on plans.

• Knowing how with budget constraints on plans.
(constrained plans advocated in [Li, PhD 2017])

• Model-checking (instead of satisfiability/validity).

• Connections with

– formal language theory,
– vector addition systems with states (VASS).

9

Our Motivations

• Knowing how with regularity constraints on plans.

• Knowing how with budget constraints on plans.
(constrained plans advocated in [Li, PhD 2017])

• Model-checking (instead of satisfiability/validity).

• Connections with

– formal language theory,
– vector addition systems with states (VASS).

9

Our Motivations

• Knowing how with regularity constraints on plans.

• Knowing how with budget constraints on plans.
(constrained plans advocated in [Li, PhD 2017])

• Model-checking (instead of satisfiability/validity).

• Connections with

– formal language theory,
– vector addition systems with states (VASS).

9

Model-Checking for Wang’s Logic

• Model-checking problem for Lkh is PSpace-complete.
[Demri & Fervari, AAAI’23]

• PSpace-hardness from nonemptiness for finite-state
automata [Galil, Acta Informatica 1976; Kozen, FOCS’77].

• PSpace-membership relies on a small plan property.

10

PSpace-hardness (easy)

Complete finite-state automata A1, A2.

A1

q0 q1 q2
a

b

a

b

a

⇒

A2

q0 q1
a

b

b

a

b

init

s
end

a

b

a

b

a

init end

b

a

b

b

a

S

L(A1)∩L(A2) ̸= /0 if and only if S ,s ⊩ Kh(init,end).

11

PSpace-hardness (easy)

Complete finite-state automata A1, A2.

A1

q0 q1 q2
a

b

a

b

a

⇒

A2

q0 q1
a

b

b

a

b

init

s
end

a

b

a

b

a

init end

b

a

b

b

a

S

L(A1)∩L(A2) ̸= /0 if and only if S ,s ⊩ Kh(init,end).

11

PSpace-hardness (easy)

Complete finite-state automata A1, A2.

A1

q0 q1 q2
a

b

a

b

a

⇒

A2

q0 q1
a

b

b

a

b

init

s
end

a

b

a

b

a

init end

b

a

b

b

a

S

L(A1)∩L(A2) ̸= /0 if and only if S ,s ⊩ Kh(init,end).

11

PSpace-Membership

• The set of plans witnessing S ,s ⊩ Kh(ϕ,ψ) is a regular
language.

– The set of plans σ violating JϕKS ⊆ SE(σ) is regular.
– The set of plans σ violating Rσ (JϕKS)⊆ JψKS is regular.

• S ,s ⊩ Kh(ϕ,ψ) iff there is a plan σ of exponential size,
witnessing the truth of Kh(ϕ,ψ).

• PSpace obtained by a standard labelling algorithm.
The case with Kh-formulae requires to build a plan on-the-fly.

12

PSpace-Membership

• The set of plans witnessing S ,s ⊩ Kh(ϕ,ψ) is a regular
language.

– The set of plans σ violating JϕKS ⊆ SE(σ) is regular.
– The set of plans σ violating Rσ (JϕKS)⊆ JψKS is regular.

• S ,s ⊩ Kh(ϕ,ψ) iff there is a plan σ of exponential size,
witnessing the truth of Kh(ϕ,ψ).

• PSpace obtained by a standard labelling algorithm.
The case with Kh-formulae requires to build a plan on-the-fly.

12

PSpace-Membership

• The set of plans witnessing S ,s ⊩ Kh(ϕ,ψ) is a regular
language.

– The set of plans σ violating JϕKS ⊆ SE(σ) is regular.
– The set of plans σ violating Rσ (JϕKS)⊆ JψKS is regular.

• S ,s ⊩ Kh(ϕ,ψ) iff there is a plan σ of exponential size,
witnessing the truth of Kh(ϕ,ψ).

• PSpace obtained by a standard labelling algorithm.
The case with Kh-formulae requires to build a plan on-the-fly.

12

Uncertainty-Based Knowing How Logics
[Areces et al., TARK’21]

• To model the situations in which an agent is not aware of the
existence of specific plans, is not able to distinguish certain
plans from others, does not care about the differences among
certain plans, etc.

• Knowing how depends on abilities but also on
indistinguishability (uncertainty) between plans.

• Finite set of agents Agt and Kha-formulae with a ∈ Agt.

13

Uncertainty-Based Knowing How Logics (II)
[Areces et al., TARK’21]

• Models S = (S,(Ra)a∈Act,(∼a)a∈Agt,V) with equivalence
relation ∼a on Πa ⊆ Act∗.

σ ∼a σ ′ iff σ and σ ′ cannot be distinguished by the agent a

• S ,s ⊩ Kha(ϕ,ψ)
def⇔ there exists an equivalence class Π of

∼a such that

(1) each plan σ in Π is SE at every ϕ-state, (JϕKS ⊆ SE(Π))

(2) from ϕ-states, each plan in Π always ends at ψ-states.
(RΠ(JϕKS)⊆ JψKS)

14

Uncertainty-Based Knowing How Logics (II)
[Areces et al., TARK’21]

• Models S = (S,(Ra)a∈Act,(∼a)a∈Agt,V) with equivalence
relation ∼a on Πa ⊆ Act∗.

σ ∼a σ ′ iff σ and σ ′ cannot be distinguished by the agent a

• S ,s ⊩ Kha(ϕ,ψ)
def⇔ there exists an equivalence class Π of

∼a such that

(1) each plan σ in Π is SE at every ϕ-state, (JϕKS ⊆ SE(Π))

(2) from ϕ-states, each plan in Π always ends at ψ-states.
(RΠ(JϕKS)⊆ JψKS)

14

Model-Checking Problem for L U
reg

• In [Areces et al., TARK’21], each Πa is finite.

• Herein, each indistinguishability relation ∼a is encoded by a
finite set of FSA (with pairwise empty intersection).

∼a= {A1, . . . ,AK}.

• The model-checking problem for L U
reg is in PTime.

15

Adding a Budget

• Budget constraints on plans advocated in [Li & Wang, ICLA’17].

• Actions have costs and execution of plans require that the
agent stays within the budget.

• In models, introduction of some weight function
wf : S×Act→ Zr for some r ≥ 0.

• Adding resource reasoning is a well-known paradigm, see e.g.

– in energy games, [Chatterjee, Doyen, Henzinger, 2017]

– in multi-agent systems. [Cao & Naumov, IJCAI’17]

– in ATL-like logics, [Alechina et al., AI 2017]

16

Adding a Budget

• Budget constraints on plans advocated in [Li & Wang, ICLA’17].

• Actions have costs and execution of plans require that the
agent stays within the budget.

• In models, introduction of some weight function
wf : S×Act→ Zr for some r ≥ 0.

• Adding resource reasoning is a well-known paradigm, see e.g.

– in energy games, [Chatterjee, Doyen, Henzinger, 2017]

– in multi-agent systems. [Cao & Naumov, IJCAI’17]

– in ATL-like logics, [Alechina et al., AI 2017]

16

Adding a Budget

• Budget constraints on plans advocated in [Li & Wang, ICLA’17].

• Actions have costs and execution of plans require that the
agent stays within the budget.

• In models, introduction of some weight function
wf : S×Act→ Zr for some r ≥ 0.

• Adding resource reasoning is a well-known paradigm, see e.g.

– in energy games, [Chatterjee, Doyen, Henzinger, 2017]

– in multi-agent systems. [Cao & Naumov, IJCAI’17]

– in ATL-like logics, [Alechina et al., AI 2017]

16

Wang’s Logic with Budget Lkh(⋆)

• Khb⃗(ϕ,ψ): Knowing how to make ψ true, given ϕ, with
budget b⃗ ∈ Nr .

• Models of Lkh(r) of the form S = (S,(Ra)a∈Act,wf ,V) with
weight function wf : S×Act→ Zr .

• S ,s ⊩ Khb⃗(ϕ,ψ)
def⇔ there is a plan σ ∈ Act∗ such that

(1) JϕKS ⊆ SE(σ); (2) Rσ (JϕKS)⊆ JψKS , and

(3) σ is b⃗-compatible at JϕKS .
“No negative value reached executing σ from ϕ-states
with initial budget b⃗”

17

Wang’s Logic with Budget Lkh(⋆)

• Khb⃗(ϕ,ψ): Knowing how to make ψ true, given ϕ, with
budget b⃗ ∈ Nr .

• Models of Lkh(r) of the form S = (S,(Ra)a∈Act,wf ,V) with
weight function wf : S×Act→ Zr .

• S ,s ⊩ Khb⃗(ϕ,ψ)
def⇔ there is a plan σ ∈ Act∗ such that

(1) JϕKS ⊆ SE(σ); (2) Rσ (JϕKS)⊆ JψKS , and

(3) σ is b⃗-compatible at JϕKS .
“No negative value reached executing σ from ϕ-states
with initial budget b⃗”

17

Complexity Inherited from Problems on VASS

• MC(Lkh(⋆)) is ExpSpace-hard.
(reduction from control-state reachability problem for VASS)

• MC(Lkh(⋆)) restricted to LTS with action costs independent
of states is ExpSpace-complete.
(reduction to control-state reachability problem for VASS)

18

MC(Lkh(⋆)) is ExpSpace-hard
• Reduction from the control-state reachability problem for
VASS known to be ExpSpace-complete.

q1 q2 q3(1,2)
(1,−3)

(5,0)

(−8,0)

(0,0)

• VASS V = (Q, r ,R), (q0, x⃗0) and qf .

• S = (S,(Ra)a∈Act,wf ,V):

T = q
u⃗−→ q′ inV ⇒ q

T−→ q′ with wf (T) = u⃗ in S

– S
def
= Q and Act

def
= R (set of transitions).

– For all T = q
u⃗−→ q′ ∈ R, for all s,s ′ ∈ S,

1. (s,s ′) ∈ RT
def⇔ s = q and s ′ = q′,

2. wf (s,T)
def
= u⃗ if s = q.

– For all s ∈ S, init ∈ V(s)
def⇔ s = q0, and

end ∈ V(s)
def⇔ s = qf .

19

MC(Lkh(⋆)) is ExpSpace-hard
• Reduction from the control-state reachability problem for
VASS known to be ExpSpace-complete.

q1 q2 q3(1,2)
(1,−3)

(5,0)

(−8,0)

(0,0)

• VASS V = (Q, r ,R), (q0, x⃗0) and qf .

• S = (S,(Ra)a∈Act,wf ,V):

T = q
u⃗−→ q′ inV ⇒ q

T−→ q′ with wf (T) = u⃗ in S

– S
def
= Q and Act

def
= R (set of transitions).

– For all T = q
u⃗−→ q′ ∈ R, for all s,s ′ ∈ S,

1. (s,s ′) ∈ RT
def⇔ s = q and s ′ = q′,

2. wf (s,T)
def
= u⃗ if s = q.

– For all s ∈ S, init ∈ V(s)
def⇔ s = q0, and

end ∈ V(s)
def⇔ s = qf .

19

MC(Lkh(⋆)) is ExpSpace-hard
• Reduction from the control-state reachability problem for
VASS known to be ExpSpace-complete.

q1 q2 q3(1,2)
(1,−3)

(5,0)

(−8,0)

(0,0)

• VASS V = (Q, r ,R), (q0, x⃗0) and qf .

• S = (S,(Ra)a∈Act,wf ,V):

T = q
u⃗−→ q′ inV ⇒ q

T−→ q′ with wf (T) = u⃗ in S

– S
def
= Q and Act

def
= R (set of transitions).

– For all T = q
u⃗−→ q′ ∈ R, for all s,s ′ ∈ S,

1. (s,s ′) ∈ RT
def⇔ s = q and s ′ = q′,

2. wf (s,T)
def
= u⃗ if s = q.

– For all s ∈ S, init ∈ V(s)
def⇔ s = q0, and

end ∈ V(s)
def⇔ s = qf .

19

MC(Lkh(⋆)) is ExpSpace-hard (II)

• Each action in Act occurs exactly once in S and therefore wf
can be defined so that wf (s,T) does not depend on s.

• Each relation is deterministic.

• S ,q0 ⊩ Khx⃗0(init,end) iff there is a finite run from (q0, x⃗0)
to a configuration with state qf in V .

20

Concluding Remarks

• Summary

– Introduction of regularity and budget constraints in logics
with knowing how.

– Complexity results for the model-checking problem, in
particular with budgets.

• Future work.

– More general plans with an operational semantics,
see [Li & Wang, AI 2021].

– How to add constraints to the alternative approach
from [Fervari et al., IJCAI’17]?

21

Concluding Remarks

• Summary

– Introduction of regularity and budget constraints in logics
with knowing how.

– Complexity results for the model-checking problem, in
particular with budgets.

• Future work.

– More general plans with an operational semantics,
see [Li & Wang, AI 2021].

– How to add constraints to the alternative approach
from [Fervari et al., IJCAI’17]?

21

Concluding Remarks

• Summary

– Introduction of regularity and budget constraints in logics
with knowing how.

– Complexity results for the model-checking problem, in
particular with budgets.

• Future work.

– More general plans with an operational semantics,
see [Li & Wang, AI 2021].

– How to add constraints to the alternative approach
from [Fervari et al., IJCAI’17]?

21

