

RL-Net: Interpretable Rule Learning with Neural Networks

Lucile Dierckx, Rosana Veroneze, Siegfried Nijssen

Paper accepted at PAKDD2023

Motivation

Need for interpretable classifiers

- In various domains
- With good performance
- \rightarrow Very present topic in the literature
- Important class: Rule-based models (IF-THEN)
- Based on pattern mining → Exponential algorithm
- Based on heuristics → Task-specific

Motivation

Recent focus on NeuSy Al

- Rely on gradient-based learning
- Keep interpretability
- Neural network literature
- \rightarrow New studies on neural rule learning

With focus on:

- Binary classification
- Unordered rule sets
- \rightarrow Need of multi-class, ordered rule list model

Objective

- Model
- Experiments
- Results
- Conclusion

Objective

DR-Net - Binary rule set¹ Or Input Rule features layer output Two-steps training Unordered rule sets **Binary rules** Unique rule consequent Ternary Binary weights weights $\{-.0.+\}$ $\{0, 1\}$

- \rightarrow Adapted for:
 - Ordered rule lists
 - Binary and multi-class rules + Easy adaptation multi-label

1 - Qiao, L., Wang, W., Lin, B.: Learning accurate and interpretable decision rule sets from neural networks. AAAI (2021)

Objective

Rule set

. . .

IF ... THEN *Positive* IF ... THEN *Positive* IF ... THEN *Positive*

ELSE Negative

No ordering

• Voting mechanism for multi-class

Rule list

. . .

IF ... THEN *Class w* ELSE IF ... THEN *Class x* ELSE IF ... THEN *Class y*

ELSE Class z

- Ordered by hierarchy
- Fully interpretable for multi-class

- Objective
- Model
- Experiments
- Results
- Conclusion

Model: RL-Net

Model: Input Features

- Used with tabular datasets
- Features are binarized
- No need to express negation

Model: Rule Layer

- Ternary weights with free value
- Weights express contribution of features
- Adaptative bias
- \rightarrow Output >0 when all conditions are met
- \rightarrow Binarized output

$$y = \sum w_i \cdot x_i - \sum_{w_i > 0} w_i + 1$$

Model: Hierarchy Layer

- Rule n is activated only if rules 1,...,n-1 are not
- Ternary weights set at initialization
- Non-trainable weights
- Lowest node = default ELSE rule

Model: Output Layer

- Associates one label per rule
- Free weights
- Highest weight of each rule is the label
- \rightarrow Remains fully interpretable

Model: Gradient-Based Training

Standard neural network optimization

- ADAM optimizer
- Cross-entropy loss
- Callback on validation loss
- Balanced loss

Simple multi-label adaptation

- Activation: softmax → sigmoid
- Loss: cross-entropy → binary cross-entropy

- Objective
- Model
- Experiments
- Results
- Conclusion

Experiments

Binary classification

- Datasets: 7
- Comparison models: DR-Net, RIPPER, CART

Multi-class classification

- Datasets: 6
- Comparison models: RIPPER, CART

Multi-label classification

- Datasets: 2
- Comparison models: CART, baseline

- Objective
- Model
- Experiments
- Results
- Conclusion

Results: Binary Classification

Results: Multi-Class Classification

Results: Multi-Label Classification

- Objective
- Model
- Experiments
- Results
- Conclusion

Conclusion

RL-Net

- Interpretable model
- Neural network learning
- Learns binary and multi-class classification
- Minor adaptations for multi-label

Performance

- Binary and multi-class: close to classical algorithms
- Multi-label: further work needed

→ Future work: Multi-label, initialization, integration to NN research

RL-Net Overview

Results: Binary Classification

Results: Multi-Class Classification

