<u>UNIVERSITÄT</u> Mannheim

Graphs vs. Vectors

- Data Science tools for prediction etc.
 - Python, Weka, R, RapidMiner, ...
 - Algorithms that work on vectors, not graphs
- Bridges built over the past years:
 - FeGeLOD (Weka, 2012), RapidMiner LOD Extension (2015), Python KG Extension (2021)
 kgextension

Row No.	attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attribute_7	attribute_8	attribute_9	attribute_10	attribute_11
1	0.020	0.037	0.043	0.021	0.095	0.099	0.154	0.160	0.311	0.211	0.161
2	0.045	0.052	0.084	0.069	0.118	0.258	0.216	0.348	0.334	0.287	0.492
3	0.026	0.058	0.110	0.108	0.097	0.228	0.243	0.377	0.560	0.619	0.633
4	0.010	0.017	0.062	0.021	0.021	0.037	0.110	0.128	0.060	0.126	0.088
5	0.076	0.067	0.048	0.039	0.059	0.065	0.121	0.247	0.356	0.446	0.415
6	0.029	0.045	0.028	0.017	0.038	0.099	0.120	0.183	0.210	0.304	0.299
7	0.032	0.096	0.132	0.141	0.167	0.171	0.073	0.140	0.208	0.351	0.179
8	0.052	0.055	0.084	0.032	0.116	0.092	0.103	0.051	0.146	0.284	0.280
9	0.022	0.037	0.048	0.048	0.065	0.059	0.075	0.010	0.068	0.149	0.116
10	0.016	0.017	0.035	0.007	0.019	0.067	0.106	0.070	0.096	0.025	0.080
11	0.004	0.006	0.015	0.034	0.031	0.028	0.040	0.027	0.032	0.045	0.049
12	0.012	0.031	0.017	0.031	0.036	0.010	0.018	0.058	0.112	0.084	0.055
13	0.008	0.009	0.005	0.025	0.034	0.055	0.053	0.096	0.101	0.124	0.110
14	0.009	0.006	0.025	0.049	0.120	0.159	0.139	0.099	0.096	0.190	0.190
15	0.012	0.043	0.060	0.045	0.060	0.035	0.053	0.034	0.105	0.212	0.164
16	0.030	0.061	0.065	0.092	0.162	0.229	0.218	0.203	0.146	0.085	0.248
17	0.035	0.012	0.019	0.047	0.074	0.118	0.168	0.154	0.147	0.291	0.233
18	0.019	0.061	0.038	0.077	0.139	0.081	0.057	0.022	0.104	0.119	0.124
19	0.027	0.009	0.015	0.028	0.041	0.076	0.103	0.114	0.079	0.152	0.168
20	0.013	0.015	0.064	0.173	0.257	0.256	0.295	0.411	0.498	0.592	0.583
21	0.047	0.051	0.082	0.125	0.178	0.307	0.301	0.236	0.383	0.376	0.302
22	0.066	0.058	0.084	0.037	0.046	0.077	0.077	0.113	0.235	0.184	0.287
23	0.010	0.048	0.030	0.030	0.065	0.108	0.236	0.238	0.007	0.188	0.146
24	0.011	0.015	0.014	0.008	0.021	0.106	0.102	0.044	0.093	0.073	0.074

Graphs vs. Vectors

- Transformation strategies (aka propositionalization)
 - e.g., types: type_horror_movie=true
 - e.g., data values: year=2011
 - e.g., aggregates: nominations=7

Row No.	attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attribute_7	attribute_8	attribute_9	attribute_10	attribute_11
1	0.020	0.037	0.043	0.021	0.095	0.099	0.154	0.160	0.311	0.211	0.161
2	0.045	0.052	0.084	0.069	0.118	0.258	0.216	0.348	0.334	0.287	0.492
3	0.026	0.058	0.110	0.108	0.097	0.228	0.243	0.377	0.560	0.619	0.633
4	0.010	0.017	0.062	0.021	0.021	0.037	0.110	0.128	0.060	0.126	0.088
5	0.076	0.067	0.048	0.039	0.059	0.065	0.121	0.247	0.356	0.446	0.415
6	0.029	0.045	0.028	0.017	0.038	0.099	0.120	0.183	0.210	0.304	0.299
7	0.032	0.096	0.132	0.141	0.167	0.171	0.073	0.140	0.208	0.351	0.179
8	0.052	0.055	0.084	0.032	0.116	0.092	0.103	0.061	0.146	0.284	0.280
9	0.022	0.037	0.048	0.048	0.065	0.059	0.075	0.010	0.068	0.149	0.116
10	0.016	0.017	0.035	0.007	0.019	0.067	0.106	0.070	0.096	0.025	0.080
11	0.004	0.006	0.015	0.034	0.031	0.028	0.040	0.027	0.032	0.045	0.049
12	0.012	0.031	0.017	0.031	0.036	0.010	0.018	0.058	0.112	0.084	0.055
13	0.008	0.009	0.005	0.025	0.034	0.055	0.053	0.096	0.101	0.124	0.110
14	0.009	0.006	0.025	0.049	0.120	0.159	0.139	0.099	0.096	0.190	0.190
15	0.012	0.043	0.060	0.045	0.060	0.035	0.053	0.034	0.105	0.212	0.164
16	0.030	0.061	0.065	0.092	0.162	0.229	0.218	0.203	0.146	0.085	0.248
17	0.035	0.012	0.019	0.047	0.074	0.118	0.168	0.154	0.147	0.291	0.233
18	0.019	0.061	0.038	0.077	0.139	0.081	0.057	0.022	0.104	0.119	0.124
19	0.027	0.009	0.015	0.028	0.041	0.076	0.103	0.114	0.079	0.152	0.168
20	0.013	0.015	0.064	0.173	0.257	0.256	0.295	0.411	0.498	0.592	0.583
21	0.047	0.051	0.082	0.125	0.178	0.307	0.301	0.236	0.383	0.376	0.302
22	0.066	0.058	0.084	0.037	0.046	0.077	0.077	0.113	0.235	0.184	0.287
23	0.010	0.048	0.030	0.030	0.065	0.108	0.236	0.238	0.007	0.188	0.146
24	0.011	0.015	0.014	0.008	0.021	0.106	0.102	0.044	0.093	0.073	0.074

07/17/23

Graphs vs. Vectors

- Observations with simple propositionalization strategies
 - Even simple features (e.g., add all numbers and types) can help on many problems
 - More sophisticated features often bring additional improvements
 - Combinations of relations and individuals
 - e.g., movies directed by Steven Spielberg
 - Combinations of relations and types
 - e.g., movies directed by Oscar-winning directors
 - ..
 - But
 - The search space is enormous!
 - Generate first, filter later does not scale well

07/17/23

Towards RDF2vec

07/17/23

- Excursion: word embeddings
 - word2vec proposed by Mikolov et al. (2013)
 - predict a word from its context or vice versa
 - Idea: similar words appear in similar contexts, like
 - Jobs, Wozniak, and Wayne founded Apple Computer Company in April 1976
 - Google was officially founded as a company in January 2006
 - usually trained on large text corpora
 - projection layer: embedding vectors

From Word Embeddings to Graph Embeddings

- Basic idea:
 - extract random walks from an RDF graph:
 - Mulholland Dr. <u>director</u> David Lynch <u>nationality</u> US
 - feed walks into word2vec algorithm
- Order of magnitude (e.g., DBpedia)
 - ~6M entities ("words")
 - start up to 500 random walks per entity, length up to 8
 - \rightarrow corpus of >20B tokens
- Result:
 - entity embeddings
 - most often outperform other propositionalization techniques
 - fixed number of features

Ristoski and Paulheim (2016): RDF2vec: RDF graph embeddings for data mining

07/17/23

The End of Petar's PhD Journey...

• ...and the beginning of the RDF2vec adventure

07/17/23

Why does RDF2vec Work?

- Example: PCA plot of an excerpt of a cities classification problem
 - From cities classification task in the embedding evaluation framework by Pellegrino et al.

07/17/23

Why does RDF2vec Work?

- In downstream machine learning, we usually want *class separation*
 - to make the life of the classifier as easy as possible
- Class separation means
 - Similar entities (i.e., same class) are projected closely to each other
 - Dissimilar entities (i.e., different classes) are projected far away from each other

07/17/23

Why does RDF2vec Work?

- Observation: close projection of similar entities
 - Usage example: content-based recommender system based on k-NN

Ristoski and Paulheim (2016): RDF2vec: RDF graph embeddings for data mining

07/17/23

Close Projection of Similar Entities

• What does *similar* mean?

07/17/23

Similarity vs. Relatedness

• Closest 10 entities to Angela Merkel in different vector spaces

RDF2vec	TransE-L1	TransE-L2	TransR
Joachim Gauck	Gerhard Schröder	Gerhard Schröder	Sigmar Gabriel
Norbert Lammert	James Buchanan	Helmut Kohl	Frank-Walter Steinmeier
Stanislaw Tillich	Neil Kinnock	Konrad Adenauer	Philipp Rösler
Andreas Voßkuhle	Nicolas Sarkozy	Helmut Schmidt	Gerhard Schröder
Berlin	Joachim Gauck	Werner Faymann	Joachim Gauck
German language	Jacques Chirac	Alfred Gusenbauer	Christian Wulff
Germany	Jürgen Trittin	Kurt Georg Kiesinger	Guido Westerwelle
federalState	Sigmar Gabriel	Philipp Scheidemann	Helmut Kohl
Social Democratic Party	Guido Westerwelle	Ludwig Erhard	Jürgen Trittin
deputy	Christian Wulff	Wilhelm Marx	Jens Böhrnsen
RotatE	DistMult	RESCAL	ComplEx
Pontine raphe nucleus	Gerhard Schröder	Gerhard Schröder	Gerhard Schröder
Jonathan W. Bailey	Milan Truban	Kurt Georg Kiesinger	Diána Mészáros
Zokwang Trading	Maud Cuney Hare	Helmut Kohl	Francis M. Bator
Steven Hill	Tristan Matthiae	Annemarie Huber-Hotz	William B. Bridges
Chad Kreuter	Gerda Hasselfeldt	Wang Zhaoguo	Mette Vestergaard
Fred Hibbard	Faustino Sainz Muñoz	Franz Vranitzky	Ivan Rosenqvist
Mallory Ervin			
manory Livin	Joachim Gauck	Bogdan Klich	Edward Clouston
Paulinho Kobayashi	Joachim Gauck Carsten Linnemann	Bogdan Klich İrsen Küçük	Antonio Capuzzi
Paulinho Kobayashi Fullmetal Alchemist and the Broken Angel	Joachim Gauck Carsten Linnemann Norbert Blüm	Bogdan Klich İrsen Küçük Helmut Schmidt	Antonio Capuzzi Steven J. McAuliffe

Portisch et al. (2022): Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction - Two Sides of the Same Coin?

07/17/23

Back to Class Separation

- What is a class?
 - e.g., cities per se
 - e.g., cities in France
 - e.g., cities in France above 250k inhabitants
- Or something different, such as
 - e.g., everything located in Strasbourg
 - e.g., everything Strasbourg is known for

07/17/23

Back to Class Separation

- Observation: there are different kinds of classes:
 - Classes of objects of the same category (e.g., cities)
 - \rightarrow those are *similar*
 - Classes of objects of different categories (e.g., buildings, dishes, organizations, persons)

 \rightarrow those are *related*

07/17/23

Intermediate Observation

- In most vector spaces of link prediction embeddings (TransE etc.): proximity ~ similarity
- In RDF2vec embedding space: proximity ~ a mix of similarity and relatedness

RDF2vec	TransE-L1	TransE-L2	TransR
Joachim Gauck	Gerhard Schröder	Gerhard Schröder	Sigmar Gabriel
Norbert Lammert	James Buchanan	Helmut Kohl	Frank-Walter Steinmeier
Stanislaw Tillich	Neil Kinnock	Konrad Adenauer	Philipp Rösler
Andreas Voßkuhle	Nicolas Sarkozy	Helmut Schmidt	Gerhard Schröder
Berlin	Joachim Gauck	Werner Faymann	Joachim Gauck
German language	Jacques Chirac	Alfred Gusenbauer	Christian Wulff
Germany	Jürgen Trittin	Kurt Georg Kiesinger	Guido Westerwelle
federalState	Sigmar Gabriel	Philipp Scheidemann	Helmut Kohl
Social Democratic Party	Guido Westerwelle	Ludwig Erhard	Jürgen Trittin
deputy	Christian Wulff	Wilhelm Marx	Jens Böhrnsen
RotatE	DistMult	RESCAL	ComplEx
Pontine raphe nucleus	Gerhard Schröder	Gerhard Schröder	Gerhard Schröder
Jonathan W. Bailey	Milan Truban	Kurt Georg Kiesinger	Diána Mészáros
Zokwang Trading	Maud Cuney Hare	Helmut Kohl	Francis M. Bator
Steven Hill	Tristan Matthiae	Annemarie Huber-Hotz	William B. Bridges
Chad Kreuter	Gerda Hasselfeldt	Wang Zhaoguo	Mette Vestergaard
Fred Hibbard	Faustino Sainz Muñoz	Franz Vranitzky	Ivan Rosenqvist
Mallory Ervin	Joachim Gauck	Bogdan Klich	Edward Clouston
Paulinho Kobayashi	Carsten Linnemann	İrsen Küçük	Antonio Capuzzi
Fullmetal Alchemist and the Broken Angel	Norbert Blüm	Helmut Schmidt	Steven J. McAuliffe
Archbishop Dorotheus of Athens	Neil Hood	Mao Zedong	Jenkin Coles

07/17/23

So... why does RDF2vec Work Then?

- Recap: downstream ML algorithms need class separation
 but RDF2vec groups items by similarity and relatedness
- Why is RDF2vec still so good at classification?

Example

- It depends on the classification problem at hand!
 - Cities vs. countries
 - Places in Europe vs. places in Asia

So... why does RDF2vec Work Then?

- Many downstream classification tasks are homogeneous
 - e.g., classifying cities in different subclasses
- For homogeneous entities:
 - relatedness provides finer-grained distinctions

07/17/23

Similarity vs. Relatedness

- Recap word embeddings:
 - Jobs, Wozniak, and Wayne founded Apple Computer Company in April 1976
 - **Google** was officially founded as a company in January 2006
- Graph walks:
 - Hamburg \rightarrow country \rightarrow Germany \rightarrow leader \rightarrow Angela_Merkel
 - Germany \rightarrow leader \rightarrow Angela_Merkel \rightarrow birthPlace \rightarrow Hamburg
 - Hamburg \rightarrow leader \rightarrow **Peter_Tschentscher** \rightarrow residence \rightarrow Hamburg

Order-Aware RDF2vec

- Using an order-aware variant of word2vec
- Experimental results:
 - order-aware RDF2vec most often outperforms classic RDF2vec
 - a bit more computation heavy, but still scales to DBpedia etc.

Figure 2: Illustration of the Structured Skip-gram and Continuous Window (CWindow) models.

Ling et al. (2015): Two/Too Simple Adaptations of Word2Vec for Syntax Problems.

07/17/23

Similarity vs. Relatedness

- Exploiting different notions of proximity
 - Use case: table interpretation (a special case of entity disambiguation)

Country Name		Capital	Currency	Official Language	Head of Government	
Afghanistan			Afabani	Dari Darajan: Dachta	Ashraf Ghani	
Albania		irane	Lek	Albanian	me Minister – Edi Rama	
Algeria		lgiers Dinar		Arabic; Tamazight; French	Prime Minister – Abdelaziz Djerad	
Andorra	<u>ഗ</u>	ndorra la Vella	Euro	Catalan	Prime Minister - Xavier Espot Zamora	
Angola	3	uanda	New Kwanza	Portuguese	President – João Lourenço	
Antigua and Barbuda	lar	aint John's	East Caribbean dollar	English	Prime Minister – Gaston Browne	
Argentina			uenos Aires	Peso	Spanish	President – Alberto Fernández
Armenia		revan	Dram	Armenian	President – Armen Sarksyan	
Australia	C	Canberra	Australian dollar	English	Prime Minister – Scott Morrison	

Similarity vs. Relatedness in Graph Walks

- Which parts of a walk denote what?
 - Hamburg → country → Germany → leader → Angela_Merkel
 - Germany \rightarrow leader \rightarrow Angela_Merkel \rightarrow birthPlace \rightarrow Hamburg
 - Hamburg → leader → **Peter_Tschentscher** → residence → Hamburg
 - California \rightarrow leader \rightarrow Gavin_Newsom \rightarrow birthPlace \rightarrow San_Francisco
- Common predicates (leader, birthPlace)
 - Similar entities
- Common entities (Hamburg)
 - Related entities
 - For same-class entities: similar entities!

Portisch and Paulheim (ESWC 2022): Walk this Way! Entity Walks and Property Walks for RDF2vec.

07/17/23

Similarity vs. Relatedness in Graph Walks

- Given that observation:
 - Common predicates (leader, birthPlace)
 - Similar classes
 - Common entities (Hamburg)
 - Related entities
 - For same-class entities: *similar* entities!
- ...we should be able to learn tailored embeddings
 - using walks of predicates \rightarrow embedding space encodes similarity
 - using walks of entities \rightarrow embedding space encodes relatedness

Portisch and Paulheim (ESWC 2022): Walk this Way! Entity Walks and Property Walks for RDF2vec.

Similarity vs. Relatedness in Graph Walks

- Classic RDF2vec walks:
 - Germany \rightarrow leader \rightarrow **Angela_Merkel** \rightarrow birthPlace \rightarrow Hamburg
- p-walk (predicates only except for focus entity)
 - country \rightarrow leader \rightarrow **Angela_Merkel** \rightarrow birthPlace \rightarrow mayor
- e-walk (entities only)
 - Berlin \rightarrow Germany \rightarrow Angela_Merkel \rightarrow Hamburg \rightarrow Elbphilharmonie

Portisch and Paulheim (ESWC 2022): Walk this Way! Entity Walks and Property Walks for RDF2vec.

07/17/23

The RDF2vec Zoo

- We now have an entire zoo of RDF2vec variants
 - SG vs. CBOW
 - Order-aware vs. unordered ("classic")
 - Classic walks vs. e-walks vs. p-walks

The RDF2vec Zoo – Preliminary Evaluation

Table 1. Result of the 12 RDF2vec variants on 20 tasks. The best score for each task is printed in bold. The first four columns use classic RDF2vec walks, while variants using e-walks and p-walks are marked with e and p, respectively. The suffix $_{oa}$ marks the ordered variant of RDF2vec.

Task	Metric	Dataset	sg	sgoa	cbow	cbow _{oa}	e sg	e sg $_{oa}$	e cbow	e cbow _{oa}	p sg	p sg _{oa}	p cbow	p $cbow_{oa}$
	eein ie	vlleueu	0.706	0.713	0.0-	0.690	0.696	0.717	0.703	0.690	0.564	0.623	0.551	0.612
	5510 15	usuany	0.818	0.803	0.725	0	0-		orio	oto or	~	⁰ .677	0.501	0.707
	auite	hoon	0.623	0.605	0.575	0.600	Ъ	oa V	anai	its ai	e	.610	0.560	0.578
	Yano	Metacritic moums	0.586	0.585	0.536	0.532	0	ofte	an ei	inoria	٦r	.632	0.569	0.667
		Metacritic Movies	0.726	0.716	0.549	0.626	0.1	UII	511 50	ирспо		0.660	0.535	0.663
Clustering	ACC	Cities and	0.780	0.000	0.520	0.017	0.726	0 726	0.668	0.660	0.605	0.520	0.637	0.733
Olustering	AUU	Countries (2k)	0.785	0.900	0.520	0.317	0.120	0.120	0.008	0.000	0.005	0.520	0.037	0.755
		Cities and Countries	0.587	0.760	0.783	0.720	0.749	0.766	0.820	0.745	0.687	0.782	0.787	0.728
		Cities, Albums												
		Movies, AAUP,	0.829	0.854	0.547	0.652	0.759	0.828	0.557	0.719	0.598	0.798	0.663	0.748
		Forbes												
		Teams	0.909	0.931	0.940	0.925	0.889	0.926	0.916	0.931	0.941	0.938	0.940	0.580
Regression	RMSE	AAUP	65.985	63.814	77.250	66.473	67.337	65.429	70.482	69.292	80.318	72.610	96.248	77.895
		Cities	15.375	12.782	18.963	19.287	17.017	16.913	17.290	20.798	20.322	17.214	24.743	20.334
		Forbes	36.545	36.050	39.204	37.067	38.589	38.558	39.867	36.313	37.146	36.374	37.947	38.952
		Metacritic Albums	15.288	15.903	15.812	15.705	15.573	15.785	15.574	14.640	15.178	14.869	15.000	16.679
		Metacritic Movies	20.215	20.420	24.238	23.362	20.436	20.258	23.348	22.518	23.235	22.402	23.979	22.071
Semantic Analogies	ACC	capital country entities	0.957	0.864	0.810	0.789	0.794	0.747	0.660	0.397	0.008	0.091	0.000	0.036
0		all capital	0.905	0.857_	0.594	0.758	0.657	0.591	0.359	0.592	0.014	0.073	0.002	0.052
		country entities	0.000		0.001	000	0.001	0.001	0.000	0.002	0.011	0.010	0.002	0.001
		currency entities	0.574	0.535	0.338	0.447	0.309	0.193	0.198	0.297	0.006	0.076	0.002	0.085
		city state entities	0.609	0.578	0.507	0.442	0.459	0.484	0.250	0.361	0.009	0.048	0.000	0.036
Entity	Kendall		0 747	0 716	0.611	0 547	0.832	0.800	D 726	0.779	0.432	0 768	0.568	0.737
Relatedness	Tau		0.111	0.110	0.011	0.011	0.002	0.000	0.120	0.110	0.402	0.100	0.000	0.101
Document Similarity	Harmonio Mean	2	0.237	0.230	0.283	0.209	0.275	0.250	0.170	0.111	0.193	0.382	0.296	0.256

Portisch & Paulheim(2023): The RDF2vec Family of Knowledge Graph Embedding Methods

07/17/23

Which Classes can be Learned with RDF2vec?

- We already saw that there are different notions of *classes*
- Idea: compile a list of class definitions as a benchmark
 - Classes are expressed as DL formulae, e.g.
 - ∃r.T, e.g. Class *person with children*
 - ∃r.{e}, e.g.: Class person born in New York City
 - ∃R.{e}, e.g., Class person with any relation to New York City
 - ∃r.C, e.g., Class person playing in a basketball team

07/17/23

Which Classes can be Learned with RDF2vec?

- Formulating hypotheses
 - e.g., $\exists r.T$, cannot be learned when using e walks
- Testing hypotheses
 - using queries against DBpedia

07/17/23

•

. . .

The DLCC DBpedia Gold Standard

- Six classes (person, book, city, movie, album, species)
- Twelve test cases
 - Sometimes also with "harder" negatives
- Three sizes per test case (50, 500, 5,000 examples)
 - Each is a balanced binary classification problem
- >200 hand written SPARQL queries
- Dataset and code available online

Hypotheses (Overview)

- Different patterns require different signals, e.g.,
 - Specific relations (visible to classic and p-walks)
 - Specific entities (visible to classic and e-walks)
 - Distinguishing subject and object (only possible for oa variants)
 - …and mixes of those

	Test Case	DL Expression	RDF2vec	$RDF2vec_{oa}$	p - RDF2vec	$p - RDF2vec_{oa}$	e - RDF2vec	$e - RDF2vec_{os}$
Hla	tc01	r.T		~		~		
H1a'	tc02	r^{-1} .T		1		✓		
H1b	tc03	$\exists r. \top \sqcup \exists r^{-1}. \top$	1	1	✓	✓		
H2a	tc04	$\exists R. \{e\} \sqcup \exists R^{-1}. \{e\}$	×	×			×	1
H2b	tc05	$\exists R_1.(\exists R_2. \{e\}) \sqcup \exists R_1^{-1}.(\exists R_2^{-1} \{e\})$	 ✓ 	✓			✓	✓
H3	tc06	$r. \{e\}$		~				
H4a	tc07	$\exists r.T$		×		(√)		
H4b	tc08	$\exists r^{-1}.T$						
H5	tc09	$\geq 2r.\top$		(√)		(√)		
H5'	tc10	$\geq 2r^{-1}$. \top		(√)		(√)		
H6a	tcl1	$\geq 2r.T$		(√)				
H6b	tcl2	$\geq 2r^{-1}.T$						

Portisch & Paulheim (2023): The RDF2vec Family of Knowledge Graph Embedding Methods

07/17/23

Which Classes can be Learned with RDF2vec?

- Formulating hypotheses
 - e.g., $\exists r.T$, cannot be learned when using e-walks
- Testing hypotheses
 - using queries against DBpedia
- Seeing surprises
 - e.g., models trained on e-walks can reach ~90% accuracy in that case

Experiments on DBpedia Gold Standard

- Most hypotheses could not be confirmed
- All problems are learnable with an accuracy >75%
 - i.e., significantly better than guessing
- Also LP embeddings such as TransE work surprisingly well

TC		SG	SGe	CBO	W CBOW	on »SG i	SG.	- CBOW	s-CBO	Woa e-SG e-SGos	e-CB	OW a CBOW	on TransE-L	1 TransE	-L2TransR	Dist.M:	ult ComplEx	RESCA	L RotatE
tc01		0.915	50.937	0.778	0.870	0.907 (0.933	0.780	0.924	0.8450.860	0.840	0.840	0.842	0.947	0.858	0.874	0.862	0.966	0.768
tc01	hard	0.681	0.89	0.637	0.891	0.627 (0.903	0.576	0.894	0.6440.651	0.659	0.659	0.799	0.916	0.744	0.646	0.651	0.830	0.618
tc02		0.953	30.96	10.865	0.956	0.930 (0.972	0.901	0.974	0.8830.895	0.906	0.906	0.852	0.970	0.832	0.859	0.853	0.908	0.737
tc02	hard	0.637	0.78	0.618	0.774	0.628	0.828	0.583	0.838	0.6230.628	0.607	0.607	0.780	0.849	0.693	0.622	0.608	0.729	0.649
tc03		0.949	0.958	0.846	0.905	0.913 (0.956	0.800	0.938	0.8830.900	0.886	0.886	0.821	0.933	0.856	0.894	0.874	0.943	0.780
tc04		0.960	0.968	8 0.705	0.872	0.877 (0.908	0.659	0.873	0.9650.969	0.915	0.915	0.934	0.986	0.973	0.984	0.990	0.990	0.862
tc04	hard	0.963	10.98	10.674	0.992	0.725 (0.828	0.583	0.782	0.938 0.990	0.953	0.983	0.814	0.912	0.855	0.917	0.935	0.918	0.789
tc05		0.986	0.993	20.772	0.906	0.869	0.899	0.719	0.870	0.990 0.995	0.931	0.931	0.867	0.948	0.881	0.907	0.905	0.908	0.802
tc06		0.957	0.96	30.698	0.850	0.876	0.903	0.641	0.857	0.9600.969	0.928	0.928	0.929	0.985	0.976	0.985	0.991	0.990	0.866
tc06	hard	0.863	0.93	50.604	0.908	0.708 (0.770	0.559	0.745	0.6990.708	0.650	0.650	0.823	0.779	0.964	0.882	0.933	0.964	0.819
tc07		0.938	0.95	50.742	0.785	0.895 (0.924	0.726	0.863	0.9460.946	0.859	0.859	0.930	0.987	0.978	0.929	0.966	0.945	0.847
tc08		0.961	0.96	50.891	0.896	0.911	0.968	0.841	0.951	0.9040.914	0.925	0.925	0.898	0.964	0.870	0.856	0.888	0.875	0.831
tc09		0.902	20.90	10.773	0.858	0.819	0.858	0.726	0.832	0.8740.884	0.840	0.840	0.884	0.938	0.879	0.877	0.883	0.929	0.780
tc09	hard	0.785	0.79	3 0.659	0.751	0.698	0.741	0.600	0.712	0.7770.782	0.744	0.744	0.749	0.848	0.758	0.774	0.776	0.820	0.676
tc10		0.947	0.958	0.918	0.905	0.924(0.975	0.852	0.969	0.9110.912	0.925	0.925	0.957	0.984	0.898	0.918	0.931	0.927	0.878
tc10	hard (0.740	0.731	70.716	0.711	0.610 (0.679	0.569	0.652	0.7150.718	0.729	0.729	0.775	0.774	0.656	0.743	0.739	0.713	0.665
tcl1		0.932	20.89	7 0.865	0.780	0.884 (0.991	0.808	0.954	0.9280.972	0.921	0.921	0.917	0.960	0.930	0.889	0.946	0.954	0.838
tc11	hard	0.725	0.73	70.687	0.676	0.684 (0.707	0.631	0.707	0.7630.734	0.641	0.641	0.712	0.806	0.753	0.666	0.723	0.726	0.638
tc12		0.955	0.93	80.888	0.909	0.900 (0.971	0.830	0.965	0.8930.905	0.904	0.904	0.961	0.984	0.879	0.912	0.894	0.927	0.834
tc12	hard	0.714	0.71	70.712	0.699	0.628 (0.637	0.545	0.628	0.6900.713	0.715	0.715	0.762	0.765	0.659	0.714	0.710	0.701	0.652

Portisch & Paulheim (2023): The RDF2vec Family of Knowledge Graph Embedding Methods

07/17/23

Experiments on DBpedia Gold Standard

- Challenge: isolating effects
 - Let's consider, ∃r.T: e.g. ∃almaMater.T
 - In theory, we should not be able to learn this with e-walks
 - Frequent entities in the neighborhoods of positive examples:
 - Politician (3k examples)
 - Bachelor of Arts (3k examples)
 - Harvard Law School (2k examples)
 - Lawyer (2k examples)
 - Northwestern University (2k examples)
 - Harvard University (2k examples)
 - Doctor of Philosophy (2k examples)
 - . .
 - Those signals are visible to e-walks!

Which Classes can be Learned with RDF2vec?

- Maybe, DBpedia is not such a great testbed
 - Hidden patterns, e.g., for relation cooccurence
 - Many inter-pattern dependencies
 - Information not missing at random
- Possible solution:
 - Synthetic knowledge graphs!
 - First experiments show better visibility of expected effects

The DLCC Synthetic Gold Standard

- Same twelve test cases as before
- Synthesize a knowledge graph for each test case
 - Create an ontology
 - Create positive examples
 - Create negative examples (double check for accidental positives)
- Test bed
 - 12 different classification problems, 1k positives/negatives each
 - Ontology and graph structure are similar to DBpedia

Experiments on DLCC Synthetic Gold Standard

- Hypotheses can be mostly confirmed
 - Quantified restrictions (tc09-tc12) are very badly learned by all approaches (as expected)
 - tc06 is extremely well learned by LP embeddings
 - Classifying r.{e} is, in fact, classic link prediction/triple scoring
 - RDF2vecoa variant is not superior on synthetic data

TC	SG	$\mathrm{SG}_{\mathrm{os}}$	CBOW	$\mathrm{CBOW}_{\mathrm{cus}}$	s-SG	$\mathrm{s}\text{-}\mathrm{SG}_{\mathrm{cu}}$	s-CBOW	$\operatorname{s-CBOW}_{\operatorname{cus}}$	e-SG	$e-SG_{ca}$	e-CBOW	e-CBOW $_{ca}$	TransE-L1	TransE-L2	TransR	Dist Mult	ComplEx	RESCAL	RotatE
tc01	0.882	0.867	0.566	0.877	0.870	0.842	0.802	0.847	0.774	0.757	0.752	0.727	0.767	0.752	0.712	0.837	0.789	0.895	0.769
tc02	0.742	0.737	0.769	0.732	0.822	0.734	0.769	0.754	0.536	0.529	0.536	0.529	0.677	0.677	0.531	0.584	0.549	0.689	0.546
tc03	0.797	0.812	0.927	0.774	0.794	0.709	0.784	0.742	0.526	0.526	0.561	0.519	0.531	0.581	0.554	0.556	0.536	0.634	0.541
tc04	1.000	0.998	0.990	0.998	0.568	0.588	0.608	0.628	1.000	0.995	1.000	0.998	0.790	0.898	0.685	0.588	0.553	0.528	0.728
tc05	0.892	0.819	0.889	0.819	0.631	0.648	0.681	0.648	0.832	0.819	0.882	0.791	0.691	0.774	0.631	0.658	0.725	0.608	0.646
tc06	0.978	0.963	0.898	0.965	0.800	0.828	0.748	0.820	0.970	0.968	0.905	0.965	0.898	0.978	0.888	1.000	1.000	1.000	0.955
tc07	0.583	0.583	0.575	0.555	0.553	0.553	0.535	0.540	0.543	0.525	0.498	0.518	0.540	0.615	0.673	0.565	0.518	0.550	0.508
tc08	0.563	0.585	0.555	0.583	0.635	0.638	0.568	0.618	0.525	0.533	0.553	0.540	0.585	0.613	0.540	0.535	0.523	0.533	0.535
tc09	0.610	0.628	0.6-48	0.605	0.563	0.550	0.605	0.590	0.550	0.535	0.508	0.528	0.588	0.543	0.525	0.525	0.545	0.638	0.538
tc10	0.638	0.623	0.665	0.600	0.548	0.560	0.633	0.565	0.593	0.565	0.568	0.515	0.588	0.573	0.518	0.525	0.510	0.580	0.533
tc11	0.633	0.580	0.668	0.575	0.573	0.555	0.580	0.553	0.550	0.545	0.540	0.545	0.583	0.590	0.573	0.518	0.590	0.625	0.538
tc12	0.644	0.614	0.657	0.638	0.563	0.565	0.590	0.640	0.541	0.568	0.560	0.524	0.618	0.550	0.513	0.553	0.540	0.578	0.533

Portisch & Paulheim (2022): The DLCC Node Classification Benchmark for Analyzing Knowledge Graph Embeddings

07/17/23

The RDF2vec Zoo – Breeding New Embeddings

- Combinations can be task specific
 - Based on general embeddings
 - Combination can pick up task-specific signals

Task data

Current Challenges with RDF2vec

07/17/23

Dynamic Knowledge Graphs

- In theory, RDF2vec can also produce embeddings for *dynamic* knowledge graphs to a certain extent
 - given that the neighbors are all known
 - Experiments are still under way

♦ teaming_ai

Embeddings and Interpretability

- Hot topic: Explainable AI
 - Knowledge Graphs are a favorable ingredient
 - Human/machine interpretable knowledge \rightarrow explainable systems
- However:
 - Embeddings replace interpretable axioms with numeric vectors over non-interpretable dimensions
 - Where did the semantics go?

Paulheim (2018): Make Embeddings Semantic Again!

07/17/23

The 2009 Semantic Web Layer Cake

The 2018 Semantic Web Layer Cake

User Interface and Applications Embeddings Data Interchange: RDF Data Interchange: XML URI Unicode

07/17/23

Alternatives to Understand KG Embeddings

- Approach 1: learn symbolic interpretation function for dimensions
- Each dimension of the embedding model is a target for a separate *learning problem*
- Learn a function to explain the dimension
- **E.g.**: $y \approx -|\exists character.Superhero|$

• Just an approximation used for explanations and justifications

07/17/23

Alternatives to Understand KG Embeddings

• Approach 2: learn symbolic substitute function for similarity function

	RDF2vec	TransE-L1	TransE-L2	TransR			
	Joachim Gauck	Gerhard Schröder	Gerhard Schröder	Sigmar Gabriel			
	Norbert Lammert	James Buchanan	Helmut Kohl	Frank-Walter Steinmeier			
	Stanislaw Tillich	Neil Kinnock	Konrad Adenauer	Philipp Rösler			
	Andreas Voßkuhle	Nicolas Sarkozy	Helmut Schmidt	Gerhard Schröder			
	Berlin	Joachim Gauck	Werner Faymann	Joachim Gauck			
	German language	Jacques Chirac	Alfred Gusenbauer	Christian Wulff			
	Germany	Jürgen Trittin	Kurt Georg Kiesinger	Guido Westerwelle			
	federalState	Sigmar Gabriel	Philipp Scheidemann	Helmut Kohl			
	Social Democratic Party	Guido Westerwelle	Ludwig Erhard	Jürgen Trittin			
	deputy	Christian Wulff	Wilhelm Marx	Jens Böhrnsen			
	RotatE	DistMult	RESCAL	ComplEx			
	Pontine raphe nucleus	Gerhard Schröder	Gerhard Schröder	Gerhard Schröder			Status Ida
	Jonathan W. Bailey	Milan Truban	Kurt Georg Kiesinger	Diána Mészáros			
	Zokwang Trading	Maud Cuney Hare	Helmut Kohl	Francis M. Bator			
	Steven Hill	Tristan Matthiae	Annemarie Huber-Hotz	William B. Bridges		In Manufacture	
	Chad Kreuter	Gerda Hasselfeldt	Wang Zhaoguo	Mette Vestergaard		has Knowle	(Industry of a Ch.)
	Fred Hibbard	Faustino Sainz Muñoz	Franz Vranitzky	Ivan Rosenqvist		hesKnowle	AMEA-OR-TITC
	Mallory Ervin	Joachim Gauck	Bogdan Klich	Edward Clouston	Gossa A dema	Pho Stienc	IIII-
	Paulinho Kobayashi	Carsten Linnemann	İrsen Küçük	Antonio Capuzzi	Gerold Schuler		the Knowle
	Fullmetal Alchemist and the Broken Angel	Norbert Blüm	Helmut Schmidt	Steven J. McAuliffe	The second second second second second second second second second second second second second second second se		a Knowledg
	Archbishop Dorotheus of Athens	Neil Hood	Mao Zedong	Jenkin Coles	hasKnowle		hertnesde.
					a Knowledg		Type Rype
					X		Suffered S. corevisia
					Naskhoule		Tros
				13 melanoma	And And And And And And And And And And	type	Lisa Rizzetto
							AE BURK
					1710 (1200)		Nakingedess - Type
					is Knowledg	dc-research	erfdet is Knowledg
					Nas Krowle		has Knowle
					Curl Figdor has	Croste DC-ATLAS database	122 /1 17
					Nati	Chevele	Rype in Knowledg in Knowledg in Knowledg
						novlatio	
						145.5	
							L. Thorees
	and aida niatura.		(https://im	to rooth (con	atomo info/dovolormont	o/rolfindor)	IN PRUGNEDO
RIGHT	and side picture: I	Keirinaer	(nups://In	leraclivesy	stems.inio/development	s/rellinder)	

07/17/23

Alternatives to Understand KG Embeddings

- Approach 3: generate symbolic interpretations for individual predictions
 - Inspired by LIME:
 - Generate perturbed examples
 - Label them using embedding+downstream classifier
 - · Learn symbolic model on this labeled set
 - Good news:
 - RDF2vec can, in principle, create embeddings for unseen entities
 - Those can be used to classify perturbed examples
 - Bad news:
 - First experiments have been discouraging

https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/

Simple Linear

Dealing with non-Relational Information

- Graph walks do not include literal (e.g., numeric) information
 - e.g., population
- Two cities are closer
 - If they share relations and entities with others
 - not: if they have a similar population

07/17/23

Summary

- Knowledge Graph Embeddings with RDF2vec
 - Encode similarity and relatedness
 - Explicit trade-off is possible!
 - Variations visited: walk extraction, order-awareness, materialization, ...
 - Additional insights that are not explicit in the graph
 - aka latent semantics
 - Challenges include, but are not limited to
 - Dynamic knowledge graphs
 - Interpretability

More on RDF2vec

- Collection of
 - Implementations
 - Pre-trained models
 - >50 documented use cases in various domains

About Implementations Models and Services Extensions Other Resources Applications References Acknowledgements Contact

About RDF2vec

RDF2vec is a tool for creating vector representations of RDF graphs. In essence, RDF2vec creates a numeric vector for each node in an RDF graph.

RDF2vec was developed by Petar Ristoski as a key contribution of his PhD thesis Exploiting Semantic Web Knowledge Graphs in Data Mining [Ristoski, 2019], which he defended in January 2018 at the Data and Web Science Group at the University of Mannheim, supervised by Heiko Paulheim. In 2019, he was awarded the SWSA Distinguished Dissertation Award for this outstanding contribution to the field.

RDF2vec.org

The hitchhiker's guide to RDF2vec.

RDF2vec was inspired by the word2vec approach [Mikolov et al., 2013] for representing words in a numeric vector space. word2vec takes as input a set of sentences, and trains a neural network using one of the two following variants: predict a word given its context words (continuous bag of words, or CBOW), or to predict the context words given a word (skip gram, or SG):

07/17/23

More on RDF2vec

- Text book on RDF2vec
 - Includes all variants discussed in this talk
 - Python cookbooks for common tasks, e.g., node classification, recommender systems, …

Synthesis Lectures on Data, Semantics, and Knowledge **OSYNTHESIS** COLLECTION OF TECHNOLOGY

Heiko Paulheim · Petar Ristoski · Jan Portisch

Embedding Knowledge Graphs with RDF2vec

Thank you!

http://www.heikopaulheim.com

<u>UNIVERSITÄT</u> Mannheim

