
Actes JIAF-JFPDA 2023

Opponent-model search in games with incomplete information∗

Junkang Li1,2 Bruno Zanuttini2 Véronique Ventos1

1NukkAI, Paris, France
2Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000 Caen, France
junkang.li@nukk.ai bruno.zanuttini@unicaen.fr vventos@nukk.ai

Résumé

Les jeux à information incomplète sont des jeux qui
modélisent des situations dans lesquelles les joueurs n’ont
pas connaissance commune du jeu auquel ils jouent, comme
par exemple dans des jeux de cartes tels que le poker ou le
bridge. Des modèles de l’adversaire peuvent revêtir une im-
portance cruciale pour la prise de décision dans de tels jeux.
Nous proposons des algorithmes pour calculer des stratégies
optimales et/ou robustes dans les jeux à information incom-
plète, étant donné différents types de connaissances à propos
des modèles de l’adversaire. En guise d’application, nous
décrivons un cadre pour raisonner sur le raisonnement de
l’adversaire dans de tels jeux, cadre dans lequel des modèles
de l’adversaire apparaissent naturellement.

Abstract

Games with incomplete information are games that
model situations where players do not have common knowl-
edge about the game they play, e.g. card games such as poker
or bridge. Opponent models can be of crucial importance
for decision-making in such games. We propose algorithms
for computing optimal and/or robust strategies in games with
incomplete information, given various types of knowledge
about opponent models. As an application, we describe a
framework for reasoning about an opponent’s reasoning in
such games, where opponent models arise naturally.

1 Introduction

Most algorithmic studies in game theory focus on the com-
putation of exact or approximate Nash equilibria, which
leaves much to be desired for many reasons. Firstly, large
games usually have more than one equilibrium. Which
equilibria should be considered rational or reasonable has
long been a subject of study: refinements of Nash equilib-
ria [5], epistemic game theory [20], etc. More importantly,

∗A long version with proofs of the claims is available at https:
//hal.science/hal-04100646.

Nash equilibrium as a solution concept has two implicit
assumptions: both players have unlimited computational
power for computingNash equilibria, and each knowswhich
equilibrium the other will choose. Needless to say, both are
difficult to justify in real-life situations.
These two assumptions are also opponent models in dis-

guise, which are models that describe or predict how an
opponent reasons in a game. In this paper, we are interested
in more general opponent models than those behind Nash
equilibria. Such opponent models have been explicitly in-
corporated into game tree search algorithms (e.g. minimax,
UV search, MCTS) for games with perfect information, for
instance by [10, 11]. The knowledge of opponent models
can result in both acceleration of game tree search (e.g. by
pruning branches not considered by the opponents) and in-
crease of the performance of strategies computed (e.g. by
exploiting the weakness of the opponents).
In this paper, we apply the same idea to games with in-

complete information, where opponent models yield even
more interesting results than in games with perfect informa-
tion. We propose different ways of taking opponent models
into account, and give algorithms for computing the corre-
sponding robust and optimal responses. We further propose
a principled method to take into account the probability that
the opponent does not behave according to any of the given
models. Finally, we show an application of these models
to the recursive modelling of opponents, where a level-:
player assumes that their opponent reasons at some level
lower than : , and recursively down to level 0.

2 Related work

Equilibrium concepts in games with perfect or imperfect
information have long been studied; in particular, they have
been related to models of knowledge and beliefs (for each
player about the others’ reasoning and strategies) via the
concept of rationalisability in the field of epistemic game

https://hal.science/hal-04100646
https://hal.science/hal-04100646


theory. For a thorough treatment, the reader may refer for
instance to the textbooks by [20] or [2].

When no opponent model is available, one typically
considers all possible (pure or mixed) strategies. In this
case, [13] and [14, 22] study the complexity of computing
maxmin strategies under a variety of settings; in particular,
for mixed strategies, they give polynomial-time algorithms
based on linear programming for two-player extensive-form
games with perfect recall, a more general setting than ours.
[18] propose a double-oracle algorithm for computing op-
timal mixed strategies for Markov decision processes with
adversarial cost functions, which can also be regarded as
a polynomial-time algorithm for computing the maxmin
strategies of a normal-form game. [3] propose an algo-
rithm that combines the ideas of linear programming and
double-oracle for zero-sum extensive-form games with per-
fect recall, and experimentally demonstrate that it is more
efficient than other algorithms when optimal mixed strate-
gies have small supports.

Opponent models can come in diverse forms. [10, 11]
propose opponent models for games with perfect informa-
tion, where models are given by the evaluation function
and the search depth of the opponent. A recent survey of
opponent modelling approaches is provided by [1]. Our
work is related to these in the sense that we assume oppo-
nent models to be given (called “type-based reasoning” by
[1]). However, an important stream of work also studies
the learning of opponent models; we refer the reader to the
survey by [19].

Among opponent models, an important class is that of
recursive models, where MAX searches a strategy (at level
:) assuming that MIN themselves searches a strategy (at
level : − 1) assuming that MAX searches. . . , etc, down
to level 0. Such models have been essentially studied to
capture human reasoning in games. [4] propose a cognitive
hierarchymodel, where an opponent’s level ismodelled by a
Poisson distribution on levels : −1, . . . , 0, and validate this
model against empirical data. [24] assess the relevance of
various modelling assumptions for level 0. [23] assess the
efficiency of reasoningwith recursivemodels by simulation.
Such recursive models are also used in epistemic game
theory to define notions such as commonbelief in rationality
[20].

Finally, a line of work closely related to ours is the study
of interactive POMDPs for collaborative decision-making
in partially observed environments [9, 6]. In this model,
a level-: agent optimizes their behaviour given a distribu-
tion over (partially observed) physical states and over other
agents’ models at level : − 1. An interesting feature of this
model is that optimal behaviours at level : can be computed
iteratively as a sequence of optimal policies for POMDPs,
where at each iteration the other agents’ model can be con-
sidered as part of the environment.

3 Background

In this paper, we focus on games in extensive form, i.e.
represented by a tree. We also focus on zero-sum games
with two players (MAX and MIN), but our study can be
easily extended to more players and general-sum.1 We
briefly describe our setting and refer the reader to textbooks
[17] for details.

In an extensive-form game with no chance, each internal
node = of the game tree is owned by a player. To each
terminal node, an outcome (or value) is attached, typically
a real number, which denotes the payoff for MAX (and
MIN’s payoff is the opposite).

We denote MAX and MIN by + and −, respectively.
Under imperfect information, an information set for a player
8 ∈ {+,−} is a set of their nodes that they cannot distinguish.
A pure strategy for 8, denoted by B8 , maps each information
set IS of 8 to an action available at IS; in particular, the same
action must be chosen at all nodes in the same IS. A mixed
strategy for 8, denoted by f8 , is a probability distribution
over the set of all pure strategies of 8, with the interpretation
that 8 plays a pure strategy randomly chosen according to
this distribution at the beginning of a game.

We write ΣP
8
(resp. ΣM

8
) for the set of all pure (resp.

mixed) strategies of player 8 in a game. We also write
?1B

1
8
+ · · · + ?: B:8 for a mixed strategy of 8 with support

{B1
8
, . . . , B:

8
} and probabilities ?1, . . . , ?: ; in particular, a

pure strategy can be regarded as a mixed strategy with
singleton support. In a game with no chance, a profile of
pure strategies (B+, B−) ∈ ΣP

+ × ΣP
−, uniquely determines a

terminal node to be reached. The payoff (for MAX) under
this profile, written as D(B+, B−), is defined to be the value
of this terminal node. The expected payoff (for MAX)
under a profile of mixed strategies (f+, f−) ∈ ΣM

+ × ΣM
−

is the expectation of MAX’s payoff over drawings of pure
strategies.

In general, games include chance nodes, which can be
seen as being owned by a player called Nature, who uses a
behaviour strategy that is common knowledge.

Games with incomplete information

In this paper, we study games with incomplete informa-
tion, where players do not have common knowledge about
the game they play. For example, a player can be uncer-
tain about the payoff or available actions of other play-
ers, or whether other players are themselves uncertain
about the game, etc. Notable examples of such games are
poker, bridge, and mahjong, where the initial distribution
of cards/tiles is not common knowledge.

A game with incomplete information can be modelled as
a game with imperfect information via the Harsanyi model,

1With the exception of the lexicographic setting, for which the defini-
tion of the problem does not trivially generalise.



which uses the notion of types to define the knowledge of a
player. For example, in a game of poker or bridge, the type
of players is their hand. More concretely, at the beginning
of a game, there is a chance node that selects a type for each
player according to a common prior. Every player learns
their own type but not the types of the other players. Then
all players participate in a game where the form of the game
tree and the outcomes can depend on each player’s type, but
the actions of every player only depend on their type.2

Best-defence model

We are interested in decision-making in games with incom-
plete information, where all actions except the selection of
each player’s type by the chance node at the root are pub-
lic. We also assume that there is no other chance node.
In other words, we are interested in two-player zero-sum
games with incomplete information where had the types
been common knowledge, the game would be of perfect
information without chance node; we call them combinato-
rial games with incomplete information (CGII). However,
the results in this paper can be extended to any game with
incomplete information with minor modifications.
Given a CGII, our goal is to find maxmin-like strategies

ofMAX. Such strategies are usually computed by backward
induction (most typically minimax-like depth-first search)
in games with perfect information. However, for a game
with incomplete information, traditional backward induc-
tion is impossible since there is no non-trivial subgame:
each proper subtree is connected to another one via at least
one information set. Instead, an approximation of maxmin
strategies can be found using the best-defence model [7],
which, by assuming MIN knows MAX’s type, simplifies a
game where both players have incomplete information into
a game where MIN has perfect information.
Throughout the paper, we study CGIIs under the best-

defencemodel. In general, available actions ofMIN depend
on their type, so not every terminal node is reachable by
a given type of MIN. However, one can assume that the
payoff for MAX at such an unreachable terminal node is
+∞, which does not change the maxmin value of the game
[7]. Therefore, we assume without loss of generality that
MIN’s set of actions is independent of their type, and all
terminal nodes are reachable by any type of MIN.
Formally, a CGII under the best-defence model is speci-

fied by a game tree (the nodes of which are partitioned into
terminal nodes, MIN’s decision nodes, and MAX’s deci-
sion nodes), an integer C ≥ 1 (which denotes the number
of MIN’s types), a common prior ®@ over MIN’s types, and
a payoff function D : ! → RC that to each terminal node
= ∈ ! of the game tree, assigns a vector of length C written

2An equivalent model called the Aumann model uses Kripke structures
where an equivalence class for player 8 corresponds to a type of 8 in the
Harsanyi model. For more details, we refer the reader to the textbook by
[17].

A
a b

B

( 1
1
1
0
0

)l ( 0
0
0
1
1

)r
C

( 1
1
0
0
0

)L ( 0
0
1
1
1

)R

Figure 1: A CGII with 5 possible worlds.

as ®D(=) = (D(=)1, . . . , D(=)C ),3 where D(=)8 is the payoff for
MAX at node = if MIN is of type 8. Notice that a game
with perfect information and no chance is a CGII under the
best-defence model with C = 1, i.e. only one type of MIN.

Example. A CGII under the best-defence model with 5
types of MIN is given in Figure 1, where we use squares
and circles to denote MAX’s and MIN’s nodes, respectively.
Unless stated otherwise, we assume in all our examples that
the common prior over MIN’s types is uniform (hence each
type occurs with probability 1/5 in this CGII). Here is an
example of playout: if MIN plays a at � and MAX plays l at
�, MAX’s payoff vector will be (1, 1, 1, 0, 0), which means
MAX’s gain is 1 if MIN is of one of the first three types, and
0 otherwise.

4 Maxmin values without opponent models

In this section, we give an overview of algorithms from
the literature for computing maxmin values without oppo-
nent models, which will be the basis of our algorithms for
opponent-model search.
We are interested in computing the maxmin value

E+ B max
e+∈Σ+

min
B−∈ΣP

−
D(e+, B−), (1)

where Σ+ is ΣP
+ or ΣM

+ , depending on context. We recall that
D denotes the expected payoff (for MAX) with respect to
type distribution and mixed strategies. Since D is linear in
MIN’s mixed strategies, replacing ΣP

− by ΣM
− in (1) would

not change the value defined, hence we define the maxmin
value to be against all pure strategies of MIN.
The maxmin value E+ is the largest payoff MAX can

guarantee by any strategy from Σ+, no matter how MIN
plays. MAX’s strategies achieving this value are called
maxmin strategies. Depending on whether we allow MAX
to use mixed strategies, two notions of maxmin arise: pure
maxmin and mixed maxmin. By definition, it is clear that
themixedmaxmin value is no smaller than the puremaxmin

3In the following, we use the notation E8 for the 8-th component of a
vector ®E .



value. As we will see, it is in general more difficult to
compute the pure than the mixed maxmin value for a CGII.
Still, in some situations, pure maxmin is more desirable or
even the only viable solution concept, e.g. when outcomes
are only partially ordered, or when mixed strategies are not
allowed due to their probabilistic nature. Hence, we will
study algorithms for both notions, with a focus on pure
maxmin since algorithms for mixed maxmin only require
minor modifications in the presence of opponent models.

A generic minimax algorithm

We will focus on algorithms for computing the maxmin
value, but they can be easily modified to compute the corre-
sponding maxmin strategies. The maxmin value of games
with perfect information is typically computed by the min-
imax algorithm, a generic version of which is shown in
Algorithm 1.

Algorithm 1: Generic minimax algorithm
1 def MiniMax(node =):
2 if = is a terminal node:
3 return eval(=)
4 else:
5 find the set of =’s children � (=)
6 if = is MAX’s decision node:
7 return

∨
=′∈� (=) MiniMax(=

′)

8 else:
9 return

∧
=′∈� (=) MiniMax(=

′)

This depth-first search algorithm has four parameters,
which we will use to capture different algorithms in the
following sections:

• + is a set of objects called situational values;

• eval is an evaluation function which maps each termi-
nal node = to a value eval(=) ∈ + ;

• ∨,∧ : +×+ → + are two associative binary operators,
referred to asMAX’s andMIN’s operator, respectively.

With eval as boundary conditions, this algorithm recur-
sively defines a situational value val(=) for every node
=. For an instantiation of this algorithm to compute the
maxmin values, one should choose the parameters as a
function of the class of games under consideration, in such
a way that there is a polynomial-time computable mapping
from the situational value of the root val(A) to the maxmin
value of the game.

For example, for games with perfect information, it is
well-known that Algorithm 1 run on the root yields the
pure/mixedmaxmin value (1)with+ B R, eval(=) B D(=),
∨ B max, and ∧ B min.

This algorithm has several advantages: returned values
for internal nodes are readily interpretable; the algorithm is
extremely efficient on memory since the recursion depth is
the depth of the game tree, which in general is exponentially
smaller than the tree; the search can be combined with
other techniques, such as heuristic functions andUV pruning
(which is possible whenever (+,∨,∧) forms a lattice [16]),
move ordering, Monte Carlo techniques such asMCTS, etc.
In the following, we will present various algorithms for

computing pure and mixed maxmin values, with or without
opponent models. Whenever possible, we will describe
them succinctly as a particular instantiation of Algorithm 1.

Pure maxmin

[7] show that the pure maxmin value is NP-hard to compute
for CGIIs. The first exact algorithm was proposed by [8],
and it can be reframed as follows.

Proposition 1. For a CGII with root A, C types of MIN,
and common prior ®@ over them, consider the instantiation
of Algorithm 1 where: situational values are finite sets of
vectors in RC ; for all terminal nodes =, eval(=) B {®D(=)};
MAX’s operator is set union∪; MIN’s operator isu, defined
for all situational values 5 and 6 by:

5 u 6 B
{(

min(E8 , E′8)
)
1≤8≤C | ®E ∈ 5 , ®E

′ ∈ 6
}
.

Then it holds that

E+ := max
B+∈ΣP

+

min
B−∈ΣP

−
D(B+, B−) = max

®E∈val(A )
®@ · ®E.

Example. For the CGII in Figure 1, we get

val(�) = {(1, 1, 1, 0, 0), (0, 0, 0, 1, 1)};
val(�) = {(1, 1, 0, 0, 0), (0, 0, 1, 1, 1)};
val(�) = {(1, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(0, 0, 0, 0, 0), (0, 0, 0, 1, 1)}.

This algorithm actually recursively enumerates all strate-
gies of MAX: each vector in val(=) implicitly represents
one or several strategies of MAX in the subtree rooted
at =. At the root �, given the uniform prior over MIN’s
types, the best vectors are (1, 1, 0, 0, 0) (corresponding to
MAX’s strategy (l, L), by which MAX chooses l at � and
L at �) and (0, 0, 0, 1, 1) (MAX’s strategy (r,R)); both
achieve the pure maxmin value ( 15 , . . . ,

1
5 ) · (1, 1, 0, 0, 0) =

( 15 , . . . ,
1
5 ) · (0, 0, 0, 1, 1) = 2/5.

Importantly, in a CGII, the expected payoff of the strate-
gies of the subtree rooted at = may depend on that of strate-
gies of a subtree rooted at another node =′, which can be
far away from =. In our example, l and R are locally op-
timal with respect to the uniform prior. However, (l,R) is
not optimal at the root, since it is MIN who chooses, with



perfect information, either a or b as a function of their type.
In other words, it is not correct to use the common prior
to evaluate strategies locally at nodes � and �: the condi-
tional probabilities of MIN’s types at both � and � depend
on MIN’s strategy and can be different from the prior.4

Reduction of situational values Even with non-locality,
situational values, which are sets of vectors, can be re-
duced to accelerate the computation. If in val(=) a vector
®E is weakly dominated by another vector ®E ′, then we can
discard ®E from val(=). This reduction corresponds to the
elimination of weakly dominated strategies. For example,
if � is an internal node of a larger CGII, then (0, 0, 0, 0, 0)
(corresponding to MAX’s strategy (A, !)) can be discarded
from val(�) without effect on the pure maxmin value of the
larger game: MAX never does worse by playing, say, the
strategy represented by (1, 1, 0, 0, 0) in the subtree rooted
at �.

In general, any reduction other than the elimination of
dominated vectors is unsound, i.e. would yield incorrect
results for at least one game. However, wewill see thatmore
reductions become sound if opponent models are available.

Mixed maxmin

The mixed maxmin value, defined by

E+ B max
f+∈ΣM

+

min
B−∈ΣP

−
D(f+, B−), (2)

can be computed in polynomial time with the linear pro-
gramming (LP) algorithm proposed by [13]. This LP algo-
rithm relies on two insights:

• The set of all mixed strategies of MAX can be repre-
sented by a system ! of linear equalities, with linearly
many (in the size of the game tree) variables and equal-
ities.

• For any threshold E and any mixed strategy f+ of
MAX represented as a solution to !, it can be ver-
ified in linear time whether minB−∈ΣP

−
D(f+, B−) ≥ E

holds by computing MIN’s best responses to f+. This
computation serves as the separation oracle in the LP.

Then the LP consists of maximising the variable E (which
will yield the mixed maxmin value in (2)) under the con-
straints in ! and the separation oracle. For more details, we
refer the reader to [13].

Example. In the game in Figure 1, the optimal mixed strat-
egy is the uniform strategy, i.e. a uniform distribution over
all 4 pure strategies of MAX. This strategy yields an ex-
pected payoff of at least 1/2, which is the mixed maxmin
value and is better than the pure maxmin value 2/5.

4This phenomenon, called non-locality by [7], is the culprit behind the
NP-hardness of pure maxmin.

The above algorithm has been improved by [22, 14].
However, for simplicity, we only show modifications of the
initial algorithm for taking opponent models into account.
Adapting them to the improved algorithms is straightfor-
ward.

5 Opponent-model search

We now come to our main contributions, which are algo-
rithms for finding maxmin strategies when given opponent
models (OM). We will be interested in the maxmin value
against a restricted set of opponent’s strategies:

E+ B max
e+∈Σ+

min
l−∈ΣO

−
D(e+, l−),

where Σ+ is the set of all pure or all mixed strategies for
MAX, ΣO

− is the set of strategies of MIN considered to be
possible by the OMs, and l− is an arbitrary strategy from
ΣO
− .
In general, OMs are models of the opponent’s reasoning,

which can come in various forms (see section 2). As a
quite general setting, we consider that an OM describes
a behaviour strategy of MIN. A behaviour strategy for a
player 8 maps each information set IS of 8 to a probability
distribution over 8’s actions at IS. All mixed strategies can
be expressed as behaviour strategies in games with perfect
recall5, and a fortiori in CGIIs since CGIIs are games with
perfect recall. For a strategy represented by amixed strategy
or another linear representation (like sequence form [13] or
evaluation function [10]), its equivalent behaviour strategy
can also be computed in time linear in the size of the game
tree.

Algorithmically, we assume that each OM is specified
by an oracle O such that, for any decision node = of MIN
and any type 8 of MIN, O(=, 8) is the strategy at = of MIN
of type 8, specified as a probability distribution over MIN’s
actions available at =. We also assume that the OMs are
given in the input and each call to the oracles takes constant
time.

In this section, we consider situations where MAX is
certain that MIN only considers strategies described by
these OMs. This assumption will be relaxed in section 6.

Single OM

We first present the simplest case, with only one OM l−,
which means that MAX has complete knowledge of MIN’s
strategy. Then the game becomes a single-player game with
perfect information [13], and the pure/mixed maxmin value

5Perfect recall means players never forget what they knew or did in
the past. For the formal definition of perfect recall and the equivalence
between mixed and behaviour strategies in games with perfect recall, see
[15].



becomes

E+ B max
B+∈ΣP

+

D(B+, l−) = max
f+∈ΣM

+

D(f+, l−),

where the last equality is due to the linearity of D. This value
can be computed by a bottom-up (i.e. depth-first) proce-
dure, which recursively computes MAX’s best strategies at
each of their information set.

More precisely, since MIN’s strategy is known perfectly,
all MIN’s decision nodes become chance nodes. As a con-
sequence, even though MAX still does not know MIN’s
type, they can compute the exact probability of reaching a
node under each of MIN’s types and, using Bayesian up-
dates, deduce the conditional probability of MIN’s types at
every node. Then MAX can choose the actions that max-
imise the payoff with respect to this conditional probability
at any MAX’s decision node.

Example. Consider again the game on Figure 1, with l−
defined as follows: MIN plays 0 if of type 1 or 2, 1 if of
type 4 or 5, and 1

20 +
1
21 if of type 3. Against l− and

the uniform prior over MIN’s types, MAX can compute the
vector ( 15 ,

1
5 ,

1
10 , 0, 0) at node �, which we call the non-

normalised belief state (NBS) at �. For instance, the first
component means that the probability of the combined event
that MIN is of type 1 and � is reached is 1/5. Observe that
normalising the NBS would give the posterior probability
over MIN’s types (for instance, 2/5 for type 1, and 0 for
type 5). Therefore, by maintaining an NBS, MAX implicitly
performs Bayesian inference on MIN’s types using l−.
Given the NBS at �, action l yields a higher (non-

normalised) payoff of 1/2 than r (with a payoff of 0) at
�. Similarly, at � the NBS is (0, 0, 1

10 ,
1
5 ,

1
5 ) and prescribes

action R (with a payoff of 1/2). At node �, MAX’s payoff
can be simply computed as the sum of their payoff at � and
�, which yields 1. One can check that 1 is indeed the best
MAX can get when playing against MIN with this particular
OM, and this payoff is obtained by the strategy (l,R), which
gives MAX a payoff of 1 independent of MIN’s actual type.

In general, every MAX’s node = is the result of a series
of MAX’s actions and MIN’s actions. MAX’s NBS at =,
written as −−→nbs(=), is computed component-wise: the 8-th
component is computed as the product of the probability of
MIN being of type 8 and the probability that MIN of type 8
takes those actions leading to = at each of MIN’s nodes that
are an ancestor of =. In particular, the NBS at the root is the
common prior over MIN’s types. With the NBS of terminal
nodes thus computed, we can then compute the best payoff
for MAX.

Proposition 2. For aCGIIwith root A and a single opponent
model l−, consider the instantiation of Algorithm 1 where:
+ B R; for all terminal nodes =, eval(=) B −−→nbs(=) · ®D(=);
MAX’s operator is max; MIN’s operator is +. Then it holds
that E+ = val(A), and the algorithm is polynomial-time.

This algorithm can be seen as a generalisation of the OM
search proposed by [10], which only consider games with
perfect information for which OMs are described by MIN’s
evaluation functions.

Probabilistic OMs

We now consider the case when MAX has several OMs
l1
−, . . . , l

<
− of MIN, and a probability distribution ®? =

(?1, . . . , ?<) over them: MIN plays the strategy l1
− with

probability ?1, l2
− with probability ?2, etc. In particular,

the pure/mixed maxmin value is given by

E+ B max
B+∈ΣP

+

<∑
9=1

? 9D(B+, l 9−) = max
f+∈ΣM

+

<∑
9=1

? 9D(f+, l 9−),

This setting is not much different from the previous one,
due to the linearity of D: these OMs can be merged into one
single OM describing the mixed strategy l− B ?1l

1
− +

· · · + ?<l<− .6 In principle, one can traverse the game tree
once and compute the behaviour strategy corresponding to
l−, then run the single-OM algorithm from Proposition 2.
Instead, we present a one-pass algorithm for probabilistic
OMs, without the need to explicitly compute and store the
strategy l−. The key is to maintain not just one, but <
NBSs, one −−→nbs 9 for each OM l 9−.

Proposition 3. For aCGII with root A and opponent models
l1
−, . . . , l

<
− distributed according to ?1, . . . , ?<, consider

the instantiation of Algorithm 1 where: + B R; for all ter-
minal nodes =, eval(=) B ∑<

9=1 ? 9
(−−→
nbs 9 (=) · ®D(=)

)
; MAX’s

operator is max; MIN’s operator is +. Then it holds that
E+ = val(A), and the algorithm is polynomial-time.

Lexicographic OMs

An important subcase of search with multiple OMs is the
case when MAX holds a lexicographic belief over MIN’s
OMs l1

−, . . . , l
<
− . For example, MAX deems that MIN

most probably follows l1
−. Otherwise, with an infinitesi-

mally smaller probability (compared to l1
−), MIN follows

l2
−. Otherwise, with an infinitesimally smaller probability

(compared to l2
−), MIN follows l3

−, etc. We define the
pure/mixed maxmin value in this case to be the vector of
length <

R< 3 −→E+ B lexmax
B+∈ΣP

+

(
D(B+, l1

−), . . . , D(B+, l<− )
)

= lexmax
f+∈ΣM

+

(
D(f+, l1

−), . . . , D(f+, l<− )
)
,

where lexmax is lexicographic maximum over vectors of
length <. In other words, if there is a unique optimal

6We abuse notation bywriting l8
− both for the given behaviour strategy

and for the equivalent mixed strategy.



strategy against l1
−, then this strategy is chosen; otherwise,

ties are broken according to their values against l2
−, and so

on.
This lexicographic belief can in fact be regarded as an

instance of probabilistic OMs, where the distribution over
OMs is −→?Y = (1, Y, Y2, . . . , Y<−1) with Y an indeterminate
interpreted as an infinitesimally small value.
Here, we give a direct algorithm. As introduced for prob-

abilistic OMs, for each node =, let −−→nbs 9 (=) be the NBS for
l 9− at =, which is a C×1 vector (each component corresponds
to one of the C types ofMIN).We canwrite all< NBSs as an
< × C NBS matrix NBS(=) B

(−−→
nbs1 (=)ᵀ, . . . ,

−−→
nbs< (=)ᵀ

)
.

For any leaf node =, the matrix product NBS(=) × ®D(=)
yields a < × 1 matrix, or equivalently a vector of size <.

Proposition 4. For a CGII with root A and opponent mod-
els l1

−, . . . , l
<
− with a lexicographic interpretation, con-

sider the instantiation of Algorithm 1 where: + B R<;
eval(=) B NBS(=) × ®D(=); MAX’s operator is lexmax;
MIN’s operator is the component-wise addition of vectors
+. Then it holds that −→E+ = val(A), and the algorithm is
polynomial-time.

Nondeterministic OMs

The last case that we consider is when MAX does not have
a probability distribution over MIN’s OMs: MIN’s strategy
is only known to be among l1

−, . . . , l
<
− . This situation is

very similar to planning under adversarial cost functions
[18]. The maxmin value is then

E+ B max
e+∈Σ+

min
1≤ 9≤<

D(e+, l8−),

which in general is different depending on whether Σ+ is
ΣP
+ or ΣM

+ . MIN now has (a priori) more agency than in
the case of probabilistic OMs, since they can choose from
a larger (but still limited) set of strategies.

Proposition 5. For aCGII with root A and opponent models
l1
−, . . . , l

<
− with a nondeterministic interpretation, con-

sider the instantiation of Algorithm 1 where: situational
values are finite sets of vectors in R<; for all terminal
nodes =, eval(=) B {NBS(=) × ®D(=)}; MAX’s operator is
set union ∪; MIN’s operator is ], defined for all situational
values 5 and 6 by 5 ]6 B {(E 9+E′9 )1≤ 9≤< | ®E ∈ 5 , ®E ′ ∈ 6}.
Then the pure maxmin value satisfies

E+ B max
B+∈ΣP

+

min
1≤ 9≤<

D(B+, l 9−) = max
®E∈val(A )

min
1≤ 9≤<

E 9 .

The algorithm above is exponential time in theworst case;
it can actually be shown that this problem is NP-complete,
even if MAX has perfect information (i.e. MIN only has 1
type) and there are only 2 OMs of MIN.
Compared to Proposition 1, it can be seen that the knowl-

edge of OMs transforms MAX’s incomplete information

about MIN’s type into their incomplete information about
MIN’s strategy. Situational values are now sets of vec-
tors of length < (instead of C). Each such vector implicitly
represents a strategy of MAX by its expected payoff against
each OM. In contrast with the case of probabilistic OMs, we
cannot further collapse each vector to a single real number,
since we have no distribution over the OMs. Still, reduction
by weak dominance can be used just as for pure maxmin
without any opponent model.

It follows that at the root, the remaining vectors are the
non-dominated strategies of MAX against MIN’s OMs. In
other words, the algorithm computes the normal form of the
game restricted to MIN’s fixed < strategies, which justifies
the correctness of Proposition 5 for pure maxmin.

As for mixed maxmin, one can modify the separation
oracle in the LP algorithm of [13]: now the oracle only
computes MIN’s best responses from the < OMs.

6 Opponent models with uncertainty

We now come to our second contribution, about the case
where a set of OMs of MIN is available, but MAX is not
certain that MIN will behave as one of them. Without loss
of generality, we focus on the case when there is a single
OMl−, which encompasses aswell the case of several OMs
with a probability distribution, as discussed in section 5.

We assume that with a probability ?∞, which is known
to MAX, MIN does not follow l−, in which case their be-
haviour is arbitrary and unpredictable, and that with prob-
ability 1 − ?∞ MIN follows l−. Intuitively, ?∞ quantifies
MAX’s uncertainty about MIN’s behaviour. This may arise
for instance when MAX tries to estimate MIN’s gameplay
level: with 1−?∞, MIN is of a certain level with a behaviour
predictable by some OM; otherwise, they have an unknown
level and nothing can be assumed about their play.

This model yields a conflict between robustness and per-
formance, well-known in the literature of linear program-
mingwith uncertain parameters orMDP planning under un-
certain cost functions. MAX desires to be cautious and ro-
bust against MIN’s unpredictable behaviour occurring with
probability ?∞, and at the same time to improve their per-
formance by exploiting their knowledge of the OM, which
correctly predicts MIN’s strategy with probability 1 − ?∞.
Formally, we define the following modified maxmin value:

E+ B max
e+∈Σ+

(
(1 − ?∞)D(e+, l−) + ?∞ min

B−∈ΣP
−
D(e+, B−)

)
,

where Σ+ is either ΣP
+ or ΣM

+ .

Example. Consider again Figure 1 and the OM l− “MIN
plays a if of type 1 or 2, b if of type 4 or 5, and 1

2 a + 1
2 b if

of type 3”. The best strategy of MAX against l− is (l,R)
with a payoff of 1. However, this strategy does not fare so
well if MIN’s strategy is not l− (or when ?∞ is close to



1): in the worst case, MIN plays b if of type 1 or 2, and
a if of type 4 or 5. Against this strategy, MAX’s expected
payoff by playing (l,R) is only 1/5. On the other hand,
the pure maxmin strategy (l, L) only has a payoff of 1/2
against l−, and so does the mixed maxmin strategy (which
is the uniform strategy), hence neither is optimal when ?∞
is close to 0.

It is clear from the example that the modified maxmin
and optimal strategies depend on ?∞. We now show how to
modify algorithms from the last sections to compute them.

Mixed strategies

We first consider the mixed strategies of MAX. The LP al-
gorithm from [13] can compute themodifiedmixedmaxmin
value and an optimal strategy of MAX, with a minor modi-
fication of the separation oracle. Concretely, given a thresh-
old E and a mixed strategy f+ for MAX, the separation or-
acle should now, apart from computing MAX’s payoff EBR
with strategy f+ under MIN’s best responses, also compute
MAX’s payoff against theOM EOM = D(f+, l−), then check
whether (1 − ?∞)EOM + ?∞EBR ≥ E holds.
Example. In the game of Figure 1 with l− as above, one
can use this algorithm to verify that MAX’s optimal strategy
is (l,R) for ?∞ ≤ 5/8, otherwise it is the uniform strategy.
This confirms that when nondeterministic behaviour hap-
pens with a small enough probability, it is worth deviating
from maxmin strategies in order to exploit the OM.

Pure strategies

For pure strategies, we build on the algorithm for a single
OM (Proposition 2). To cope with non-locality (because
of MIN’s partially unpredictable behaviour), we use situ-
ational values which are sets of ordered pairs 〈B, ®E〉, with
B ∈ R and ®E ∈ RC , where C is the number of types of MIN.
We call such a pair an annotated vector; it implicitly repre-
sents a strategy for MAX for which the payoff against l− is
B, and the worst payoff against unpredictable behaviour is
given by ®E. We also maintain an NBS −−→nbs(=) for each node
=, over MIN’s types, as in section 5.
Proposition 6. For a CGII with root A , C types of MIN with
common prior ®@, opponent model l−, and probability ?∞
that MIN does not behave according to l−, consider the
instantiation of Algorithm 1 where: situational values are
finite sets of annotated vectors; for all terminal nodes =,
eval(=) B {〈−−→nbs(=) · ®D(=), ®D(=)〉}; MAX’s operator is set
union ∪; MIN’s operator is u′, where, for all situational
values 5 and 6, 5 u′ 6 is defined to be
{〈B + B′, (min(E8 , E′8))1≤8≤C 〉 | 〈B, ®E〉 ∈ 5 , 〈B′, ®E ′〉 ∈ 6}.

Then the modified pure maxmin value satisfies

E+ = max
〈B, ®E 〉∈val(A )

(
(1 − ?∞)B + ?∞ ( ®@ · ®E)

)
.

Notice that when combining two annotated vectors at a
MIN’s node, the scalar part is additive; this reflects the fact
that when following the (single) OM, MIN has no agency,
just as in the case without uncertainty.

Example. Using the algorithm above for the game in Fig-
ure 1 with the aforementioned OM l−, we find that MAX’s
optimal strategy is (l,R) for ?∞ ≤ 5/7, otherwise (l, L) or
(r,R). Again, this shows that it may be worth deviating
from maxmin strategies in order to exploit an OM.

Reduction of situational values The algorithm in Propo-
sition 6 generalises the one in Proposition 1, which can be
regarded as the case ?∞ = 1. We have seen that, in the latter
case, the only sound reduction of situational values is the
elimination of weakly dominated strategies. Interestingly,
when an OM is available, further reductions become sound.

Let = be a node, and 〈B, ®E〉, 〈B′, ®E ′〉 ∈ val(=) be two
annotated vectors. Discarding 〈B′, ®E ′〉 because of 〈B, ®E〉 is
sound if MAX is never worse-off in the whole game if they
choose 〈B, ®E〉 instead of 〈B′, ®E ′〉 at =.

Since scalar parts are summed up, if B > B′ holds, then
〈B, ®E〉 has an advantage B − B′ over 〈B′, ®E ′〉 in terms of
contribution to the final value at the root. Contrastingly, for
the vectorial part, components for which ®E is larger than ®E ′
might be erased by the combination (via component-wise
min) of vectors at an ancestor of =. In other words, ®E’s
advantage with respect to ®E ′ can be annihilated at the root.
On the other hand, the components for which ®E is smaller
than ®E ′ may never get erased so that ®E’s disadvantage with
respect to ®E ′ can survive intact at the root.

Hence, in the worst case, ®E ′ can keep all advantages it has
compared to ®E, while ®E can lose all its advantages. Hence,
to safely discard 〈B′, ®E ′〉, the advantage of ®E ′ over ®E must
be no larger than the advantage of B over B′. More formally,
we can safely discard 〈B′, ®E ′〉 when the following holds:

(1 − ?∞) (B − B′) ≥ ?∞
∑

1≤8≤C

(
@8 max(E′8 − E8 , 0)

)
, (3)

Notice that without the scalar part (e.g. when ?∞ = 1),
the pruning condition (3) reduces to E8 ≥ E′8 for all 8, which
is exactly the pruning condition shown in section 4.

7 Application to recursive opponent models

We now propose an application of the algorithms presented
before to the computation of optimal strategies with recur-
sive opponentmodels. We formulate a quite general setting,
where various types of opponent models naturally arise.

Limitations of the best-defence model

In general, in a game with incomplete information, both
players have incomplete information, rather than just MAX.



R
a b

A

( 0 1 1 )

a1

( 1 0 1 )

a2

( 1 1 0 )

a3

B

( 1 0 0 )

b1

( 0 1 0 )

b2

( 0 0 1 )

b3

Figure 2: A CGII with 3 possible types of MAX.

As a result, the best-defence model usually gives MIN too
much power.

Example. Consider the game in Figure 2, where MAX
has 3 types and MIN has only 1 (hence MIN has incomplete
information). If MAX reasons according to the best-defence
model, then both actions a and b have a value of 0: MAX
of type 8 reasons that MIN will play a8 at node �, and b 9 at
node � for some 9 ≠ 8. The culprit is that under the best-
defence model, MAX assumes MIN is aware of MAX’s type,
therefore can adapt their strategy to it. However, if MAX
realises MIN is unaware of their type, then MAX will prefer
a since under uniform common prior over MAX’s types, a
yields an expected payoff of 2/3, compared to b’s 1/3.

On the other hand, computing maxmin strategies for the
original game tree without using the best-defence model
is not ideal either, for these strategies fail to exploit any
assumption one may have about their adversary, such as
that they have limited computational power or reasoning
depth, or that they have a predictable behaviour pattern.
Such assumptions make sense in particular when playing
against humans [10, 21].

Proposed framework

The framework which we propose can be seen as a gen-
eralisation of the cognitive hierarchy model [4] and at the
same time as a counterpart of interactive POMDPs [6] for
competitive games. The general idea is to define level-:
strategies to be the optimal strategies against an adversary
of level : − 1, and recursively down to level-0 strategies.
We however give a general and parametrizable definition
about (1) how level-0 strategies are defined, (2) how opti-
mal strategies at a given level are aggregated, and (3) how
strategies of various levels are aggregated. Moreover, using
our results in section 6, the framework leaves the possibility
for players to assign a non-zero probability to the event that
their opponent has an unknown strategy/level.
As a consequence, this framework serves as a compro-

mise between the best-defencemodel and the full game, and
can be used to find better strategies against non-omnipotent
and non-omniscient players; in particular, it generalises the
best-defence model. Moreover, this framework can be used
to explain real-life human psychological gameplay in games

with incomplete information such as bridge, as we illustrate
at the end of this section.

For the formal definition, consider a two-player zero-sum
game. Let Σ0

+, Σ0
− be non-empty sets of strategies of MAX

and MIN, respectively. Moreover, let ⊕ : 2Σ → Σ be a
function that maps any set of (pure or mixed) strategies to
a single (pure or mixed) strategy, and BR : Σ∗ → 2Σ be
a function which maps any tuple of strategies to a set of
strategies; ⊕ will be used to aggregate strategies of a player
at a given level, and BR to compute the set of optimal
strategies given a tuple of opponent models (one per lower
level).7

Definition 7 (level-: strategies). Let Σ0
+, Σ0

−, ⊕, BR be
defined as above, and let 8 ∈ {+,−}. The set of level-0
strategies for player 8 is defined to be Σ0

8
. For : ≥ 1, the set

of level-: strategies for player 8, denoted by Σ:
8
, is defined

to be BR
(
⊕(Σ:−1

−8 ), ⊕(Σ:−2
−8 ), . . . , ⊕(Σ0

−8)
)
.8

In short, the level-: strategies of player 8 are the best
responses (computed by BR, the best-response function)
against an opponent using the strategy ⊕(Σ:′−8) (computed
by ⊕, the intra-level aggregation) at each level : ′ ≤ : . The
boundary conditions, i.e. the level-0 strategies, are given by
Σ0
+ and Σ0

−, which can come from maxmin strategies under
the best-defence model, randomly chosen strategies [18],
modelling assumptions for human players [24], etc.

Example. The Poisson-CH model in [4] is captured by
choosing Σ0

+ and Σ0
− to be the set of all pure strategies

of MAX and MIN, the intra-level aggregation ⊕ to map
any set of strategies to the uniform mixture of the set, and
the best-response function BR to map a tuple of strategies
(f:−1
−8 , . . . , f

0
−8) to the set of all pure best responses to the

mixed strategy ?:−1f
:−1
−8 + · · · + ?0f

0
−8 , where ?:−1, . . . , ?0

follow some Poisson distribution.

An interesting choice for the intra-level aggregation ⊕ :
2Σ → Σ is given by the uniform mixture, as in the example
above. Under this ⊕, many other situations can be modelled
by using different best-response functions BR for the inter-
level aggregation. For games with incomplete information,
if a function BR computes the best responses per type of
player9, then suchBR can be implemented by the algorithms
presented in the last sections. Some examples follow.

Probabilistic model If each player 8 at level : has a sub-
jective probability over their opponent’s reasoning
levels in the form of a vector (?:−1

8,:
, ?:−2
8,:
, . . . ?0

8,:
),

then we can define BR to compute, for each player

7The framework could be easily adapted to more general functions,
e.g. an aggregation of the strategies at the same level into a set or a tuple
of strategies. It could also be easily adapted to general games, beyond the
two-player and zero-sum assumptions.

8For a player 8 ∈ {+, −}, we write −8 for the other player.
9In other words, for each player, BR computes the best strategies for

each type of this player.



8 and level : , the best responses against the mixture
?:−1
8,:
⊕(Σ:−1

−8 ) + · · · + ?0
8,:
⊕(Σ0

−8) (which can be im-
plemented by the algorithm in Proposition 3). This
model amounts to assuming that a player at level :
reasons as if their opponent places themselves at a rea-
soning level drawn from the above distribution; such
a distribution can be obtained by empirical studies,
for instance by fitting a model against a population of
possible opponents in an open tournament.

Iterative model By setting ?:−1
8,:

= 1 for all 8 and : in the
previous model, we can model situations where each
player at level : assumes their opponent reasons at
exactly level :−1, which corresponds to Proposition 2.

Lexicographic model BR can also be defined to compute
the best responses against the tuple of opponentmodels
(⊕(Σ:−1

−8 ), . . . , ⊕(Σ0
−8)) under the lexicographic inter-

pretation (which can be implemented by the algorithm
in Proposition 4); this amounts to assuming that the
opponent reasons at level : −1, and to tie-break equiv-
alent strategies by level : − 2, and so on.

Nondeterministic model With a BR as in Proposition 5,
we can model situations where each player at level :
assumes the opponent reasons at a level lower than :
but without assuming a distribution over their levels.
In such cases, the incomplete information about the
opponent’s types is transformed into the one about
their reasoning levels, which are in generalmuch fewer.

Partially unknown opponent model If in addition to the
probabilistic or the lexicographic model above, we
consider probabilities ?∞

8,:
that the opponent of player

8 at level : is not reasoning at any level lower than
: , then we can use the approaches under uncertainty
from section 6.

Let us also emphasise that the straightforward generalisa-
tion of this framework to general games allows, for instance,
to take into account one’s partner’s incomplete information
in multiplayer games, akin to interactive POMDPs.

A real-life example

We now give an example application of our formalism,
which captures the psychological strategies of a contract
bridge deal played in a bridge tournament. We present the
abstract version of the game on Figure 3 (left); for the bridge
deal itself, see [12].

In this game, the common prior about MIN’s types is
given by ?1 = 0.4 and ?2 = 0.6. For the recursive rea-
soning, ⊕ is given the uniform mixture, BR is given by
the lexicographic model, and the level-0 strategies for both
players are their pure maxmin strategies.

The first few levels of the recursive reasoning proceed
as in Figure 3 (right). In the following, we write f1

− |f2
−

A

( 1
1
)l h

B

( 1
0
)f ( 0

1
)nf

: MAX MIN 1 MIN 2
0 {nf} {l, h} {l, h}
1 {nf} {h} {l, h}
2 {f} {h} {l, h}
3 {f} {h} {h}

Figure 3: Recursive reasoning in a CGII with 2 types of
MIN. For each : ≤ 3, the set of level-: strategies (as
defined in Definition 7) for MAX, MIN of type 1, and MIN
of type 2 are given in the table.

for MIN’s strategy if type-1 MIN plays f1
− and type-2 MIN

plays f2
−; and l+h

2 for the uniform mixed strategy 1
2 l + 1

2 h.

k = 0: MAX prefers nf, which achieves a maxmin value of
0.6, against 0.4 for f; both types of MIN are indifferent
between l and h since both yield a minmax value of 1.

k = 1: Against (⊕(Σ0
−)) = ( l+h

2 |
l+h
2 ), MAX’s best strategy

is still nf; however, against (⊕(Σ0
+)) = (nf), type-1

MIN prefers h which yields a value of 0.

k = 2: Against (⊕(Σ1
−), ⊕(Σ0

−)), MAX now prefers f,
which is strictly better than nf against ⊕(Σ1

−) = h| l+h2
since the NBS of MAX at node B judges MIN is more
likely to be of type 1 than of type 2 if MIN plays h| l+h2 ;

k = 3: At level-3, type-1 MIN still prefers h: h and l are
equivalent against ⊕(Σ2

+) = f, but h is preferred against
⊕(Σ1

+) = nf; but now type-2 MIN also prefers h!

As it turns out, this recursive reasoning perfectly captures
what happened during the bridge deal, where MAX was
at level 2 and therefore chose f (rather than the maxmin
strategy nf) while MIN, being of type 2, reasoned at level 3
and used strategy h to defeat MAX.
Admittedly, in the game of Figure 3, MIN’s strategy h

weakly dominates l, and therefore MIN should never play
l. However, this game is an extreme abstraction of the real
game, which has a huge number of strategies; it is not at
all obvious that h is weakly dominant. In addition, many
other real-life examples of recursive reasoning, which we
cannot give here for space reasons, yield risky strategies,
i.e. those that are neither maxmin nor dominant and as a
result could performworse if the opponent’s reasoning level
is incorrectly estimated. Indeed, in our example, this is the
case for MAX’s level-2 strategy f: against MIN of level 1,
it indeed performs better (0.7) than the maxmin strategy nf
(0.6), but against MIN of level 3 it performs worse (0.4).

8 Conclusion

We have proposed a number of ways to take into account
opponent models in games with incomplete information.



For each type of opponent model, we have formally defined
the maxmin value and proposed an algorithm to compute it.
We have also considered the case where the opponent, with
some probability, does not follow anymodel, and the goal is
to be robust against any possible adversarial strategy while
maximally exploiting the knowledge of opponent models.
As an application, we have proposed a general frame-

work of recursive opponent models. This parametrizable
framework can model, by using appropriate intra-level ag-
gregations and best-response functions, a wide range of
situations of recursive reasoning, including the possibility
that an opponent does not follow any model. Illustrated by
an example from the game of Bridge, we have shown how
this framework captures real-life strategic reasoning, and
how our algorithms can be used for models defined in the
economy literature [4].
Two main directions are worth pursuing for future work:

To consider games represented compactly (e.g. by game
rules) instead of explicitly by their game tree; and to for-
mally define our recursive framework in doxastic logic,
which is similar to the notion of rationalisability in epis-
temic game theory but allows false beliefs (about the others’
level, for instance). For the latter direction, the intuition is
that level-: strategies can be seen as strategies optimal for an
agent with a depth of knowledge of : in the Kripke structure
over the players’ types. For instance, assuming the players’
distributed knowledge of the actual combination of types,
it can be shown that under this definition, level-0 strategies
are optimal strategies against the best-defence model.

References

[1] Albrecht, Stefano V. and Peter Stone: Autonomous
agents modelling other agents: A comprehensive sur-
vey and open problems. Artif. Intell., 258:66–95,
2018. https://doi.org/10.1016/j.artint
.2018.01.002.

[2] Bonanno, Giacomo: Game Theory. Kindle Direct
Publishing, 2018.

[3] Bosanský, Branislav, Christopher Kiekintveld, Vil-
iam Lisý, and Michal Pechoucek: An exact double-
oracle algorithm for zero-sum extensive-form games
with imperfect information. J. Artif. Intell. Res.,
51:829–866, 2014. https://doi.org/10.161
3/jair.4477.

[4] Camerer, Colin F., Teck Hua Ho, and Juin Kuan
Chong: A cognitive hierarchy model of games. The
Quarterly Journal of Economics, 119(3):861–898,
August 2004, ISSN 0033-5533.

[5] Damme, Eric van: Stability and Perfection of Nash
Equilibria. Springer Berlin Heidelberg, 1991.

[6] Doshi, Prashant, Piotr J. Gmytrasiewicz, and Edmund
H. Durfee: Recursively modeling other agents for de-
cision making: A research perspective. Artif. Intell.,
279, 2020. https://doi.org/10.1016/j.arti
nt.2019.103202.

[7] Frank, Ian and David A. Basin: A theoretical and em-
pirical investigation of search in imperfect informa-
tion games. Theor. Comput. Sci., 252(1-2):217–256,
2001. https://doi.org/10.1016/S0304-3975
(00)00083-9.

[8] Ginsberg, Matthew L.: GIB: imperfect information in
a computationally challenging game. J. Artif. Intell.
Res., 14:303–358, 2001. https://doi.org/10.1
613/jair.820.

[9] Gmytrasiewicz, Piotr J. and Prashant Doshi: A frame-
work for sequential planning in multi-agent settings.
J. Artif. Intell. Res., 24:49–79, 2005. https:
//doi.org/10.1613/jair.1579.

[10] Iida, Hiroyuki, Jos W. H. M. Uiterwijk, H. Jaap
van den Herik, and I. S. Herschberg: Potential ap-
plications of opponent-model search, part 1: The do-
main of applicability. J. Int. Comput. Games Assoc.,
16(4):201–208, 1993. https://doi.org/10.323
3/ICG-1993-16403.

[11] Iida, Hiroyuki, Jos W. H. M. Uiterwijk, H. Jaap
van den Herik, and I. S. Herschberg: Potential appli-
cations of opponent-model search, part 2: Risks and
strategies. J. Int. Comput. Games Assoc., 17(1):10–
14, 1994. https://doi.org/10.3233/ICG-1994
-17103.

[12] Karpin, Fred L.: Psychological strategy in contract
bridge: The techniques of deception and harassment
in bidding and play. Dover Publications, 1977.

[13] Koller, Daphne and Nimrod Megiddo: The complex-
ity of two-person zero-sum games in extensive form.
Games and Economic Behavior, 4(4):528–552, 1992,
ISSN 0899-8256. https://www.sciencedirect.
com/science/article/pii/089982569290035Q.

[14] Koller, Daphne, Nimrod Megiddo, and Bernhard von
Stengel: Efficient computation of equilibria for ex-
tensive two-person games. Games and Economic
Behavior, 14(2):247–259, 1996, ISSN 0899-8256.
https://www.sciencedirect.com/science/
article/pii/S0899825696900512.

[15] Kuhn, H. W.: 11. Extensive Games and the Problem
of Information, pages 193–216. Princeton University
Press, Princeton, 1953, ISBN 9781400881970. http
s://doi.org/10.1515/9781400881970-012.

https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1613/jair.4477
https://doi.org/10.1613/jair.4477
https://doi.org/10.1016/j.artint.2019.103202
https://doi.org/10.1016/j.artint.2019.103202
https://doi.org/10.1016/S0304-3975(00)00083-9
https://doi.org/10.1016/S0304-3975(00)00083-9
https://doi.org/10.1613/jair.820
https://doi.org/10.1613/jair.820
https://doi.org/10.1613/jair.1579
https://doi.org/10.1613/jair.1579
https://doi.org/10.3233/ICG-1993-16403
https://doi.org/10.3233/ICG-1993-16403
https://doi.org/10.3233/ICG-1994-17103
https://doi.org/10.3233/ICG-1994-17103
https://www.sciencedirect.com/science/article/pii/089982569290035Q
https://www.sciencedirect.com/science/article/pii/089982569290035Q
https://www.sciencedirect.com/science/article/pii/S0899825696900512
https://www.sciencedirect.com/science/article/pii/S0899825696900512
https://doi.org/10.1515/9781400881970-012
https://doi.org/10.1515/9781400881970-012


[16] Li, Junkang, Bruno Zanuttini, Tristan Cazenave,
and Véronique Ventos: Generalisation of alpha-beta
search for AND-OR graphs with partially ordered val-
ues. In Raedt, Luc De (editor): Proc. Thirty-First In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 2022), pages 4769–4775. ijcai.org, 2022.
https://doi.org/10.24963/ijcai.2022/661.

[17] Maschler, Michael, Eilon Solan, and Shmuel Zamir:
Game Theory. Cambridge University Press, 2nd edi-
tion, 2020.

[18] McMahan, H. Brendan, Geoffrey J. Gordon, and
Avrim Blum: Planning in the presence of cost func-
tions controlled by an adversary. In Fawcett, Tom and
Nina Mishra (editors): Proc. Twentieth International
Conference onMachine Learning (ICML2003), pages
536–543. AAAI Press, 2003. http://www.aaai.o
rg/Library/ICML/2003/icml03-071.php.

[19] Nashed, Samer B. and Shlomo Zilberstein:A survey of
opponent modeling in adversarial domains. J. Artif.
Intell. Res., 73:277–327, 2022. https://doi.org/
10.1613/jair.1.12889.

[20] Perea, Andrés: Epistemic Game Theory: Reasoning
and Choice. Cambridge University Press, 2012.

[21] Stahl, Dale O. and Paul W. Wilson: On players’ mod-
els of other players: Theory and experimental evi-
dence. Games and Economic Behavior, 10(1):218–
254, 1995, ISSN 0899-8256. https://www.scienc
edirect.com/science/article/pii/S0899825
685710317.

[22] von Stengel, Bernhard: Efficient computation of be-
havior strategies. Games and Economic Behavior,
14(2):220–246, 1996, ISSN 0899-8256. https:
//www.sciencedirect.com/science/articl
e/pii/S0899825696900500.

[23] Weerd, Harmen de, Rineke Verbrugge, and Bart Ver-
heij: How much does it help to know what she knows
you know? an agent-based simulation study. Artif.
Intell., 199-200:67–92, 2013. https://doi.org/
10.1016/j.artint.2013.05.004.

[24] Wright, James R. and Kevin Leyton-Brown: Level-0
models for predicting human behavior in games. J.
Artif. Intell. Res., 64:357–383, 2019. https://doi.
org/10.1613/jair.1.11361.

https://doi.org/10.24963/ijcai.2022/661
http://www.aaai.org/Library/ICML/2003/icml03-071.php
http://www.aaai.org/Library/ICML/2003/icml03-071.php
https://doi.org/10.1613/jair.1.12889
https://doi.org/10.1613/jair.1.12889
https://www.sciencedirect.com/science/article/pii/S0899825685710317
https://www.sciencedirect.com/science/article/pii/S0899825685710317
https://www.sciencedirect.com/science/article/pii/S0899825685710317
https://www.sciencedirect.com/science/article/pii/S0899825696900500
https://www.sciencedirect.com/science/article/pii/S0899825696900500
https://www.sciencedirect.com/science/article/pii/S0899825696900500
https://doi.org/10.1016/j.artint.2013.05.004
https://doi.org/10.1016/j.artint.2013.05.004
https://doi.org/10.1613/jair.1.11361
https://doi.org/10.1613/jair.1.11361

	Introduction
	Related work
	Background
	Maxmin values without opponent models
	Opponent-model search
	Opponent models with uncertainty
	Application to recursive opponent models
	Conclusion

