
Actes JIAF-JFPDA 2023

A New Evolutive Generator for Graphs with Communities and its
Application to Abstract Argumentation

Jean-Marie Lagniez1 Emmanuel Lonca1 Jean-Guy Mailly2 Julien Rossit2

1 CRIL, Univ. Artois, CNRS, France
2 Université Paris Cité, LIPADE, F-75006 Paris, France

{lagniez, lonca}@cril.fr
{jean-guy.mailly, julien.rossit}@u-paris.fr

Abstract
Graph generators are a powerful tool to provide bench-

marks for various subfields of KR (e.g. abstract argumen-
tation, description logics, etc.) as well as other domains of
AI (e.g. resources allocation, gossip problem, etc.). In this
paper, we describe a new approach for generating graphs
based on the idea of communities, i.e. parts of the graph
which are densely connected, but with fewer connections
between different communities. We discuss the design of an
application named crusti_g2io implementing this idea, and
then focus on a use case related to abstract argumentation.
We show how crusti_g2io can be used to generate structured
hard argumentation instances which are challenging for the
fourth International Competition on Computational Models
of Argumentation (ICCMA’21) solvers.

1 Introduction

Graph-based models are widespread in many fields of
Knowledge Representation and Reasoning [10] (e.g. abs-
tract argumentation [12], description logics [28], etc.) as
well as other domains of Artificial Intelligence like multi-
agent systems (e.g. resources allocation [4], gossip problem
[11], etc.).

The popularity of this kind of representation appeals au-
tomated graphs generation approaches to provide challen-
ging benchmarks that can put to the test practical tools de-
veloped within these various frameworks. The literature of-
fers different methods to generate graphs, which exhibit dif-
ferent properties and various applicabilities to concrete pro-
blems and scenarios. In particular, one challenge consists in
generating structured instances, i.e. random graphs which
present interesting patterns that are relevant for some speci-
fic application. A well-known example of such a structured
generation model is the Watts-Strogatz model [31], where

the generated graphs have a small world property. Among
the variety of graphs that have been studied, some recent
works are interested in the generation of graphs with com-
munities of nodes, i.e. parts of the graphs which are densely
connected, but with fewer connections between different
communities [20]. Such models include BTER [23] and
Darwini [17], that propose to link nodes inside so-called
affinity blocks, and then to add links between the nodes
from different blocks. This kind of graphs is for example
able to model interactions between people, including in so-
cial networks [26]. The importance of generators for this
kind of graphs is amplified by the privacy issues that come
when using real social networks data [32].

Being a model of choice to represent people commu-
nities, graphs with communities are a de facto candidate
to encode large debates, which could be the source of ar-
gumentative reasoning. Computational argumentation has
become an important sub-field of Knowledge Representa-
tion and Reasoning, being a prominent formalism for non-
monotonic reasoning [12] in general, and reasoning with
inconsistent knowledge in particular [3].

However, until recently, there was an important lack of
practical approach for computing the solutions of argumen-
tation problems. Although there were some algorithmic ap-
proaches proposed in the literature, few pieces of software
were actually available for the community. This has changed
(mainly) thanks to the organization of the First International
Competition on Computational Models of Argumentation
(ICCMA), in 2015. Since then, some solvers have been pro-
posed, based either on original techniques dedicated to ar-
gumentation frameworks [19, 21, 22], or on translation into
other frameworks which have already proven efficient com-
putational benefits (namely Boolean satisfaction problem
(SAT) [16, 24, 29], Answer Set Programming (ASP) [15]

or Constraint Satisfaction Problems (CSP) [5]). The efforts
of the community at the occasion of the various editions
of ICCMA have seen a general increase of the quality
of the computational approaches for argumentation, both
with respect to the correctness of the approaches and their
runtime efficiency. However, the lack of challenging and
realistic benchmarks for argumentation is still an issue for
the community. Using (community-based) graph generators
was naturally quickly considered to fill this hole.

BTER and Darwini approches are customizable in the
sense that some metrics can be given to produce graphs
with communities of expected shapes, but the manner the
communities are linked is tied with the community genera-
tion algorithm which follows the Erdös-Rényi model [18].
In this paper, we propose a new generation approach and
we apply it to abstract argumentation.

Our approach is based on three components : we first ge-
nerate an outer graph which gives a global skeleton for the
structure of the generated instance ; then in each node of the
outer graph, we generate an inner graph i.e. a community
of nodes ; and finally when two nodes of the outer graph are
connected, we use a linker to add some relations between
the corresponding inner graphs. We then show how our
method can be applied to generate structured, challenging
graphs for argumentation purpose. The added value of our
approach compared to the previous ones lies in its ability
to be generic and modular, since any of the three compo-
nents can be easily replaced by other versions. In particu-
lar, the outer and inner graphs can be generated through
classical generation models like Erdös-Rényi [18], Watts-
Strogatz [31] or Barabási-Albert [1], but any other model
could be plugged instead (including BTER and Darwini
graphs themselves). Our contribution includes a documen-
ted, open-source graph generator following this inner/outer
template. This application has been made to be easily used
by any user, but also to be convenient for developers who
want to add new features like graph generators, linkers or
output formats.

The paper is organized as follows. After providing some
necessary background in Section 2, we first introduce the
inner/outer model in Section 3. This model is then ins-
tantiated to generate abstract argumentation benchmarks in
Section 4. Section 5 presents some related works. Neces-
sary and relevant features of our framework are presented
in Section 6, followed by some experiments in Section 7.
Finally, Section 8 draws some conclusions and highlights
avenues for future work.

2 Background on Graph Generators

Let us first describe various classical graph generation
models, which are later used in the conception of our new
approach. In the following, we use 𝐺 = ⟨𝑁, 𝐸⟩ to denote
any graph, where 𝑁 are the nodes and 𝐸 are the edges. In

the case of a directed graph, 𝐸 ⊆ 𝑁 × 𝑁 , while in the case
of a non-directed graph, 𝐸 ⊆ {{𝑎, 𝑎′} | 𝑎, 𝑎′ ∈ 𝑁}. We
also consider simple models like paths and trees.

Erdös-Rényi The Erdöz-Rényi (or binomial graph) gene-
ration model [18] takes into consideration two parameters
𝑛𝑒 ∈ N and 𝑝𝑒 ∈]0, 1] to construct graphs ⟨𝑁, 𝐸⟩ with
|𝑁 | = 𝑛𝑒 nodes, where for each couple (𝑎𝑖 , 𝑎 𝑗) ∈ 𝑁 × 𝑁

there is a probability 𝑝𝑒 to add an edge (𝑎𝑖 , 𝑎 𝑗) in 𝐸 .

Watts-Strogatz The model proposed in [31] considers a
number of arguments 𝑛𝑤 ∈ N and an even number 𝑘𝑤 ∈ N
(s.t. 𝑘𝑤 < 𝑛𝑤) to construct a ring lattice made of 𝑛𝑤 nodes,
where each node is linked to 𝑘𝑤 other nodes. Then, for
each node 𝑎 and each edge (𝑎, 𝑏) of this node, there is a
probability 𝑝𝑤 of re-wiring the edge (avoiding to duplicate
an existing edge or to link the node 𝑎 with itself). Such
graphs are called small worlds, i.e. for any two nodes in
the graph, the shortest path between them has a logarithmic
length in the number of nodes.

Barabási-Albert The preferential attachment model by
[1] is based on two parameters 𝑛𝑏, 𝑚𝑏 ∈ N. It allows to
generate graphs ⟨𝑁, 𝐸⟩ where |𝑁 | = 𝑛𝑏, which are built by
incrementally enlarging an initial graph (possibly made of
a single node), such that each new node is attached to 𝑚𝑏

nodes with a preference for existing nodes with the higher
degree (formally, the probability to attach a new node 𝑎 to
an existing node 𝑏 is 𝑝𝑏 =

𝑑𝑒𝑔 (𝑏)∑
𝑐 𝑑𝑒𝑔 (𝑐) where 𝑑𝑒𝑔(𝑏) (resp.

𝑑𝑒𝑔(𝑐)) is the degree of 𝑏. (resp. of 𝑐), and 𝑐 iterates over
the set of nodes already present in the graph).

Community-based Graphs Some models have already
been proposed in the literature to incorporate the notion
of community within the structure of the graphs, such as
BTER and Darwini. BTER [23] splits a set of 𝑘 nodes into
so-called affinity blocks (i.e. the communities of nodes),
which are then locally linked, and finally nodes from dif-
ferent blocks are linked together. Affinity blocks are linked
following the Erdös-Rényi model, while the links between
different blocks use the Chung-Lu model [9] (which is an
extension of the Erdös-Rényi model). Darwini [17] per-
forms a similar process, with an additional starting point
which consists in mapping each node with its degree and
clustering coefficient.

Directed/Undirected Graphs In the definition that we
provide for the Erdös-Rényi model, we assume that the
graph is directed. It is easy to obtain a non-directed graph
by choosing to add an (undirected) edge {𝑎𝑖 , 𝑎 𝑗 } with a
probability 𝑝𝑒 (instead of considering both the directed
edges (𝑎𝑖 , 𝑎 𝑗) and (𝑎 𝑗 , 𝑎𝑖)). Similarly, obtaining a directed
path is easy (once the non-directed graph made of a single

path (𝑎1, 𝑎2, . . . , 𝑎𝑛) is built, each edge is directed from 𝑎𝑖
to 𝑎𝑖+1, for each 𝑖 ∈ {1, . . . , 𝑛− 1}). In the case of trees, we
can also easily build a directed graph, for instance with the
edges going “down” from the root to the leaves.

Unfortunately, the graphs generated by the other models
are generally non-directed. When a directed graph is requi-
red, it could be possible to randomly select the orientation
of each edges. However, depending the targeted applica-
tion, this solution is still not satisfactory. For example, when
considering the problem of generating argumentation fra-
meworks, it is important to consider symmetrical attacks
between argument in order to cover a wide range of cases.
To do so, an option consists in considering a parameter
𝑝𝑠 ∈ [0, 1] representing the probability that a given edge
should be symmetrical. Then, for an edge {𝑎𝑖 , 𝑎 𝑗 } in the
non-directed graph, there will be a probability 𝑝𝑠 to have
both (𝑎𝑖 , 𝑎 𝑗) and (𝑎 𝑗 , 𝑎𝑖) in the directed version of the
graph, and a probability 1−𝑝𝑠

2 for either (𝑎𝑖 , 𝑎 𝑗) or (𝑎 𝑗 , 𝑎𝑖).

3 The Inner/outer Model

As mentioned earlier, existing community-based graphs
generators suffer from being tied to the model used to build
their communities. In order to overcome this issue, we pro-
pose a new approach for generating graphs that considers
underlying graph structures. Roughly speaking, we imple-
ment the reverse approach of the BTER process : we first
generate the relations between the communities, then we
generate communities and finally we link them by connec-
ting some of their inner elements. More precisely, an outer
graph 𝐺GO that will be used as a skeleton for the instance
is first constructed from a graph generator GO . Then, each
node of this graph is associated with a fresh inner graph
(fresh in the sense where nodes of each inner graph are dis-
joint) built by another generator GI . In order to link inner
graphs together, we successively consider each inner graph
𝐺𝑛 rooted to a node 𝑛 of 𝐺GO and add edges between it and
the inner graphs𝐺𝑛′ rooted to a node 𝑛′ when an edge exists
in the outer graph between 𝑛 and 𝑛′. The final graph is then
the set of inner graphs together with the added edges. Inter-
estingly, such generation process can handle both directed
and undirected graphs (with the constraint that both gene-
rators and the added edges involve edges of the same kind).
Formally, the function in charge of linking inner graphs
together in the directed case is defined as follows :

Definition 1 (Directed linker) A linker over directed
graphs is a mapping L𝑑 such that, for any 𝐺1 = ⟨𝑁1, 𝐸1⟩
and 𝐺2 = ⟨𝑁2, 𝐸2⟩ :L𝑑 (𝐺1, 𝐺2) ⊆ (𝑁1×𝑁2) ∪ (𝑁2×𝑁1).

For the undirected case the linker is defined as follows :

Definition 2 (Undirected linker) A linker over undirected
graphs is a mapping L𝑢 such that, for any 𝐺1 = ⟨𝑁1, 𝐸1⟩

and 𝐺2 = ⟨𝑁2, 𝐸2⟩ : L𝑢 (𝐺1, 𝐺2) ⊆ {{𝑛1, 𝑛2} | 𝑛1 ∈
𝑁1, 𝑛2 ∈ 𝑁2}.

Without loss of generality, in the following we only consi-
der the directed case. Algorithm 1 formalizes our approach.

Algorithm 1 Inner/outer graph generation

Input: an outer graph generator GO , an inner graph gene-
rator GI and a linker L

Output: an inner/outer graph
1: 𝐺GO ← ⟨𝑁, 𝐸⟩ a GO-generated graph
2: for 𝑛 ∈ 𝑁 do
3: 𝐺𝑛 ← ⟨𝑁𝑛, 𝐸𝑛⟩ a GI-generated graph
4: end for
5: 𝐿 = ∅
6: for (𝑛, 𝑛′) ∈ 𝐸 do
7: 𝐿 ← 𝐿 ∪ L(𝐺𝑛, 𝐺𝑛′)
8: end for
9: return ⟨(⋃𝑛∈𝑁 𝑁𝑛), (

⋃
𝑛∈𝑁 𝐸𝑛) ∪ 𝐿⟩

The generation process starts with the generation of the
outer graph, i.e. the graph which is used as the skeleton of
the instance (line 1). Then, each node of this outer graph is
associated with an inner graph which is built by the dedica-
ted graph generator GI (line 3). The rest of the algorithm
consists in building some links between the different inner
graphs, with respect to the structure of the outer graph. To
do so, for each edge in the outer graph, the inner graphs
associated with the two outer graph nodes under conside-
ration are passed to the linker (line 7) ; the resulting set of
edges is stored. At the end, the algorithm returns the union
of the inner graphs plus the edges returned by the linker,
producing the final inner/outer graph.

Our approach offers the advantage of being flexible and
allows, for instance, to generate a community graph such
that the outer graph is a tree (T) and inner graphs are
Erdös-Rényi graphs (ER). It is also possible to generate
paths of Barabási-Albert (BA) graphs, or Watts-Strogatz
(WS) graphs made ofWS communities, etc.

Example 1 Let us illustrate the generation algorithm with
GO = T , GI = ER, and L a function which returns a
random set of edges between two graphs. An example of
generation process is given at Figure 1. Figure 1a shows
the outer graph, which is thus a balanced binary tree. Then,
in each node of the tree, an inner graph is generated thanks
to the Erdös-Rényi model (Figure 1b). Figure 1c shows
the addition of edges between the inner graphs thanks to the
linker. And finally, the resulting graph is shown at Figure 1d.

4 Application to Abstract Argumentation

From a practical point of view, it seems reasonable to
assume that large debates may be structured in smaller

(a) Outer Graph

𝑎1
1 𝑎1

2

𝑎2
1 𝑎2

2

𝑎4
1 𝑎4

2 𝑎5
1 𝑎5

2

𝑎3
1

𝑎3
2 𝑎3

3

𝑎6
1

𝑎6
2 𝑎6

3

𝑎7
1

𝑎7
2 𝑎7

3

(b) Inner Graphs

𝑎1
1 𝑎1

2

𝑎2
1 𝑎2

2

𝑎4
1 𝑎4

2 𝑎5
1 𝑎5

2

𝑎3
1

𝑎3
2 𝑎3

3

𝑎6
1

𝑎6
2 𝑎6

3

𝑎7
1

𝑎7
2 𝑎7

3

(c) Edges between Inner Graphs

𝑎1
1 𝑎1

2

𝑎2
1 𝑎2

2

𝑎4
1 𝑎4

2 𝑎5
1 𝑎5

2

𝑎3
1

𝑎3
2 𝑎3

3

𝑎6
1

𝑎6
2 𝑎6

3

𝑎7
1

𝑎7
2 𝑎7

3

(d) Final Graph

Figure 1 – Generation process.

sub-debates, which are only connected by few links ; this
would follow how people are themselves structured in so-
cial networks [26]. More precisely, this can be the case,
for instance, in argumentation frameworks related to multi-
issue negotiation, where each sub-debate corresponds to
the arguments focusing on one issue, and the links between
sub-debates correspond e.g. to the concessions (“If I accept
to pay more for this car, then I want the company to deliver
it faster” makes the link between the sub-debate about the
price of the car and the sub-debate about the delivery date).
So, in some sense, these sub-debates represent communities
of arguments which are strongly related (i.e. there is a high
density of attacks in such a community), and there are fewer
relations between different communities. In this section, we
briefly recall basic notions of abstract argumentation.

Definition 3 An abstract argumentation framework (AF)
[12] is a directed graph F = ⟨𝐴, 𝑅⟩ where 𝐴 is a set of
arguments and 𝑅 ⊆ 𝐴 × 𝐴 is the attack relation between
arguments.

We say that an argument 𝑎 attacks an argument 𝑏 if
(𝑎, 𝑏) ∈ 𝑅. This is generalized to sets of arguments : 𝑆
attacks 𝑏 (resp. 𝑆′) if there is some 𝑎 ∈ 𝑆 which attacks 𝑏

(resp. some 𝑏 ∈ 𝑆′). A set 𝑆 defends an argument 𝑎 if for
any 𝑏 attacking 𝑎, there is a 𝑐 ∈ 𝑆 attacking 𝑏. Acceptability
of arguments is usually evaluated thanks to the notion of ex-
tensions, i.e. sets of collectively acceptable arguments. Va-
rious semantics exist for defining extension [12]. Formally,
a semantics is a function 𝜎 : F = ⟨𝐴, 𝑅⟩ ↦→ E ⊆ 2𝐴.

Definition 4 Given an AF F = ⟨𝐴, 𝑅⟩, and a set of argu-
ment 𝑆 ⊆ 𝐴,

— 𝑆 ∈ cf(F) iff ∀𝑎, 𝑏 ∈ 𝑆, (𝑎, 𝑏) ∉ 𝑅,
— 𝑆 ∈ ad(F) iff 𝑆 ∈ cf(F) and 𝑆 defends all its

elements,
— 𝑆 ∈ co(F) iff 𝑆 ∈ ad(F) and 𝑆 does not defend any

argument in 𝐴 \ 𝑆,
— 𝑆 ∈ pr(F) if 𝑆 is a ⊆-maximal element of ad(F),
— 𝑆 ∈ stb(F) iff 𝑆 ∈ cf(F) and 𝑆 attacks all the

arguments in 𝐴 \ 𝑆,
— 𝑆 ∈ gr(F) iff 𝑆 is the ⊆-minimal element of co(F).

where cf, ad, co, pr, stb and gr stand respectively for
conflict-free, admissible, complete, preferred, stable and
grounded.

See e.g. [12, 2] for more details about these semantics
as well as other semantics defined in the literature. Let
us illustrate the complete, preferred, stable and grounded
semantics with the following example :

Example 2 The extensions for co, pr, stb and gr of the
AF F = ⟨𝐴, 𝑅⟩ depicted in Figure 2 are given in Table 1.

𝑎1 𝑎2 𝑎3

𝑎4

𝑎5

Figure 2 – The AF F

Semantics 𝜎 Extensions 𝜎(F)
co ∅, {𝑎1}, {𝑎2, 𝑎4}
pr {𝑎1}, {𝑎2, 𝑎4}
stb {𝑎2, 𝑎4}
gr ∅

Table 1 – Extensions of the AF F

Recall that reasoning with AFs is generally hard, with
many classical problems at the first or second level of the
polynomial hierarchy [14].

5 Related Works

The next sections presents the application we develo-
ped to generate inner/outer graphs and its application to
generate AF benchmarks. There already exists tools for ge-
nerating AFs from random graph generators. But, from the
best of our knowledge, these tools do not modify the under-
lying graph generated by these models. In [7], the authors

propose the C++ framework AFBenchGen. It is an AF
generator based on the Erdös-Rényi model (ER). In [8],
the same authors proposed an extension of AFBenchGen,
called AFBenchGen2 which is written in Java, that also
consider two additional random graph generator models,
which are the Watts-Strogatz (WS) and Barabási-Albert
(BA) models. For these two generators the random graphs
are used as such. Our tool is much more general than the
AFBenchGen family of AFs generators. Indeed, by consi-
dering the simple graph consisting in one node as outer
graph, it is possible to have the exactly same behaviour.

In [25], we introduced a new method for generating chal-
lenging benchmarks for the ICCMA’21 competition. This
generator is the fundamental basis of our tool. More pre-
cisely, we have proposed three variants of our generator
⟨GO ,GI

𝑖
,L⟩, with 𝑖 ∈ {1, 2, 3}, defined as follows. In our

case GO = T , meaning that the underlying graph is ac-
tually a perfectly balanced 𝑑-tree of height ℎ, where 𝑑 and
ℎ are fixed and provided as parameters. The only difference
between the three variants is the inner graphs generator :
GI1 = ER, GI2 = BA, while GI3 is a random pick of either
ER or BA, which means that in the first case all the local
graphs are Erdös-Rényi graphs, in the second case they are
all Barabási-Albert graphs, and in the last case they can be
either of them with a probability 0.5.

Once the outer graph has been generated, the inner graphs
are linked as follows. For this generation model, the iteration
over the set of edges (line 6 in Algorithm 1) is a breadth-first
graph traversal from the root to the leaves of the tree. For
each inner graph associated with an outer node 𝑜, k nodes
are randomly selected (k varies from 5 up to 12 for the
benchmarks generated for the ICCMA’21 competition). The
descendants {𝑜1, . . . , 𝑜𝑚} of 𝑜 are iteratively considered.
For each 𝑜𝑖 , between 20% and 70% of the inner nodes
contained in 𝑜𝑖 are randomly selected. Then, for each node
𝑛1 picked in 𝑜 and with each node 𝑛2 picked in 𝑜𝑖 one of
the attacks (𝑛1,𝑛2) or (𝑛2,𝑛1) is added randomly.

In this paper a slightly modified version of the tool pro-
posed for generating the ICCMA’21 benchmarks has been
considered. Inner graphs are only linked with their children
(and not with any of their descendants). Moreover, a ratio
of 20% has been considered for selecting the edges that
are added between communities (instead of a ratio between
20% and 70% of the nodes).

6 The crusti_g2io graph generator

We built a command line application called crusti_g2io,
dedicated to the generation of inner/outer graphs. It is made
available under the terms of the GNU GPLv3 on Github ac-
count of the Centre de Recherche en Informatique de Lens. 1

1. At the time of submission, it is here : https:
//www.cril.univ-artois.fr/~lonca/crusti_
g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.

We took advantage of the Rust programming language to
provide an efficient, memory-safe application, even in pa-
rallel context. In addition, Rust allows crusti_g2io to be both
an application and a library (the project in mainly a Rust
library with additional code to create the application). Inter-
estingly, Rust libraries can be turned into C libraries (static
or dynamic) or be linked with them. This makes crusti_g2io
able to use any library that can be turned into a C library or
to be used itself with any program that can load C libraries,
allowing for example Go and Python bindings.

The application can be used to generate both directed
and undirected graphs. In the following, we describe how
to use the application for directed graphs only ; however,
going from directed to undirected is as simple as replacing
directed by undirected in the commands.

The first goal of crusti_g2io is to be easy to install and
to use. The only requirement to use it is to have a Rust
compiler installed (except of course if you were given an
already compiled version) ; then, executing a standard re-
lease build command (cargo build -release) pro-
duces the executable (in the target/release direc-
tory on UNIX systems). The user can also use the cargo
install command to compile and install the program on
its computer.

From a user perspective, crusti_g2io is made to be used
without looking at its documentation. Calling crusti_g2io
with -h, -help displays the list of the commands
and what they do. Calling crusti_g2io with a command
and one of the two help flags displays the help mes-
sage associated with the command. For example, cal-
ling crusti_g2io generate-directed -h ex-
plains what generate-directed does, gives its man-
datory and optional options (along with their descriptions).

The goal of crusti_g2io is to generate a graph from
an outer graph generator, an inner graph generator and
a linker, and to output it using a graph output for-
mat. Thus, these exact four options form the exact set
of mandatory options for the generate-directed
command. Again, they can be recalled by typing
crusti_g2io generate-directed -h in a ter-
minal. Concerning the lists of the available graph ge-
nerators, linkers and graph output formats, they can
all be retrieved by a crusti_g2io command (respectively
generators-directed, linkers-directed and
display-engines-directed) ; calling these com-
mands also indicates how to parameterize the generators,
linkers or formats which need it. Figure 3 shows how to
build a tree-like outer graph (-o) of 10 inner (-i) Erdös-
Rényi graphs of 100 nodes with a probability of 0.5 where
links (-l) are created between lowest degree nodes, and
export (-x) it in the file t_10_er_100_50.dot using
the dot format (-f). The required parameters for gene-
rators and linkers (when needed) are given after a slash

zip.

https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip
https://www.cril.univ-artois.fr/~lonca/crusti_g2io-94dfb5e8b6e14a3c13bf9f861b0ad221533815de.zip

me@PC:~/crusti_g2io generate-directed -o tree/10 -i er/100,0.5 -l min_incoming -x t_10_er_100_50.dot -f dot
![INFO] [2023-03-03 10:54:39] crusti_g2io 0.1.0
[...]
![INFO] [2023-03-03 10:54:39] random seed is 6203895736620038422
![INFO] [2023-03-03 10:54:39] beginning the outer graph generation
![INFO] [2023-03-03 10:54:39] beginning the inner graphs generation
![INFO] [2023-03-03 10:54:39] beginning the linking
![INFO] [2023-03-03 10:54:39] generated a graph with 1000 nodes and 24882 edges
![INFO] [2023-03-03 10:54:39] exiting successfully after 45.6625ms

Figure 3 – Example on invocation of crusti_g2io.

and split by commas (see tree/10 and er/100,0.5 in
the figure). Embedded graph generators include the famous
Erdös-Rényi, Watts-Strogatz and Barabási-Albert models,
trees and chains. Concerning the linkers, one is a random
one, one links nodes with the least incoming edges, and the
last one links the nodes with index 0 — which can have
some meaning, in particular if a graph is initialized with
a special value like in the Barabási-Albert model. Finally,
The Graphviz DOT and GraphML formats are available,
just like the abstract argumentation related format APX we
use in next section.

Figure 4 – Implementation of a new graph generator for
Erdös-Rényi graphs using the petgraph library.

These generators, linkers and formats are a very small
subset of what is offered by the literature. This is the rea-
son why we tried to make the addition of new content
as easy as possible for developers. For example, to add
a new generator, it is only required to create a structure
that implements the four functions of the dedicated trait

and to register it in the set of generators. Concerning the
trait, the implementation of three functions out of four is
straightforward (see Figure 4 for an example of imple-
mentation for ER graphs using the petgraph library –
https://crates.io/crates/petgraph), as they
respectively return the name of the generator to be used
on the command line interface, the description of the ge-
nerator, and the types of the expected parameters. The last
function is the one dedicated to the generation of graphs :
it takes as input the (checked) parameter values as given on
the command line interface (i.e. the content following the
slash) and returns a closure which takes a pseudo-random
number generator (PRNG) and produces a graph. The re-
gistration of the new generator consist of adding an import
statement and a single line of code. Adding a new linker
requires a similar process, except that the closure takes a
PRNG and two graphs, and returns a vector of edges. When
invoking crusti_g2io, the graph can be printed out on the
standard output (this is the default behaviour) or exported
to a file. The default behavior mixes log messages and the
graph ; this can be prevented by hiding the log messages
(e.g. by setting the corresponding option) or by exporting
the graph to a file. Adding a new output format is similar to
adding a new generator or linker.

Finally, crusti_g2io is made to produce reproductible re-
sults. By default, it uses an unpredictable random seed ;
in order to get reproductible results, the user can set the
random seed with the -s option on the command line.
Regardless of the fact the seed was specified or randomly
specified, it is logged so the results can be reproduced. An
effort was made in order to mix reproducibility and the use
of the full power of the computers, as the application com-
putes the inner graphs and the links between these graphs
in a parallel fashion. In order to get reproductible results,
the program first computes the outer graph using the glo-
bal PRNG initialized with the provided seed. Then, each
outer node is sequentially associated a random seed using
the global PRNG. This way, each inner graph generation
process can receive a PRNG which directly depends on the
CLI-provided seed, enforcing the reproducibility of the ge-
neration for a given seed. The same approach is used for the
linking process.

https://crates.io/crates/petgraph

7 Using crusti_g2io to generate challenging
abstract argumentation problems

In this section, we use crusti_g2io to generate structu-
red instances for abstract argumentation solvers. The goal
is to generate overall challenging instances composed of
multiple communities. In addition, we want to generate ins-
tances with a large amount of small communities, but also
instances with less communities of a greater size. To achieve
this, we aim at drawing the frontier between hard and too-
hard instances for a set of community sizes, densities and
counts.

In order to evaluate the difficulty induced by the genera-
ted argumentation graphs, we chose to compute extensions
(putting acceptance queries aside) to consider the whole
graphs instead of problems that could be related to a redu-
ced area of the graph. We arbitrary selected a problem of
the first level of the polynomial hierarchy (SE-ST : com-
pute an extension for the stable semantics) and one of the
second level (SE-PR : compute an extension for the pre-
ferred semantics). For both tracks, we used the solvers that
got the best results at the ICCMA’21 competition, namely
A-Folio-DPDB 2 for the SE-ST track and µ-Toksia [29] for
the SE-PR track. As A-Folio-DPDB delegates the SE-ST
problems to the µ-Toksia solver submitted at ICCMA’19,
we finally used µ-Toksia (2019) for SE-ST problems. We
chose to build communities of Erdös-Rényi graphs, since
those graphs were already used to generate AFs and can be
naturally generated as directed graphs. Communities were
linked following a tree template (like ICCMA’21 instances).
The linker processes in a way inspired by the ER genera-
tor : each possible edge from the source graph to the target
graph is added with probability 0.2.

In the first part of our experiments, we sought which sizes
of communities are small enough to be part of our graphs.
We used crusti_g2io to generate single Erdös-Rényi graphs
(by asking for an outer graph composed of a single node)
with different number of nodes (from 100 to 1000) and
probability for each edge to appear (0.1, 0.2 and 0.5). For
each setting, we generated 10 different graphs by feeding the
app with random seeds from 0 to 9 ; the computation times
are averages of these 10 values, and a timeout of at least one
makes the average be also timeout. We run experiments on
machines equipped with Intel Xeon E5-2637 v4 processors
and 128GB of RAM, and the timeout was fixed to 600s, as
in ICCMA’21. Table 2 shows some experimental results.

First, we can note that for a given number of nodes,
instances are more difficult for lower Erdös-Rényi probabi-
lity values. This may be explained by the lower number of
constraints, making preferred extensions admit more argu-
ments, and stable extensions less common. This hypothe-
sis would require further investigation, but is off-topic here

2. https://github.com/gorczyca/dp_on_dbs/tree/
competition

ER proba. ER nodes SE-ST (s) SE-PR (s)

0,1 100 0,01 0,03
200 3,13 9,14
300 — —
400 — —

0,2 100 0,02 0,02
200 1,85 4,13
300 13,87 22,91
400 — —

0,5 100 0,01 0,02
200 0,10 0,07
300 0,14 0,37
400 0,23 4,11
500 1,81 13,97
600 4,28 16,56
700 3,34 41,23
800 6,72 74,41
900 11,27 141,24
1000 14,32 67,37

Table 2 – CPU time required by µ-Toksia 2019 (resp. 2021)
to compute a single stable (resp. preferred) extension for dif-
ferent sizes of Erdös-Rényi graphs. CPU times are average
of 10 values. If a timeout was reached for at least one graph,
— is reported.

since we are only interested in the difficulty of the instances.
Communities of 100 arguments seem easy for both SE-

ST and SE-PR, whatever the probability setting. With a
setting of 0.1, the problems begin to require multiple se-
conds to be solved for 200 nodes ; this value should not
be exceeded for instances involving several communities.
A single community of 300 nodes cannot be solved in this
context. With a setting of 0.2, the limit in terms of number
of nodes to consider for multiple communities seems to be
between 200 and 300 ; for this value, a single community
requires more than 10 seconds for SE-ST, and more than
20s for SE-PR. A setting of 0.5 allows to generate instances
with a single community of at least 1000 nodes. Interestin-
gly we remarked that in this case, all instances admit stable
extensions, which is not the case for the other probability
settings. This indicates that these instances have a special
structure that might make solvers work differently on them.
Finally, as expected, the SE-PR problem takes more time to
be solved than SE-ST.

Now that we have bounds on the size of the communities
to consider, we can experiment the difficulty induced by
the number of communities. We generated complete binary
trees of Erdös-Rényi communities, where each community
is linked to the ones associated with its children.

For this second experiment session, we considered Erdös-
Rényi with nodes between 100 and 500 with the same three

https://github.com/gorczyca/dp_on_dbs/tree/competition
https://github.com/gorczyca/dp_on_dbs/tree/competition

probability settings. We assumed the multiplicity of the
communities would make the instances very hard for the
0.5 probability for more than 500 nodes per community.
We considered outer tree heights from 3 to 9, making the
outer graphs contain from 7 to 511 nodes. For each setting,
10 instances were generated with random seeds going from
0 to 9. We used to same machines and timeout than before.
Figures 5 and 6 report the interesting parts of these new
results. The plots on Figure 5 correspond to the results for
the SE-ST track, while Figure 6 reports the results for SE-
PR. For each figure, the three subfigures are each associated
with a density setting (0.1, 0.2 and 0.5). For each subfigure,
the average computation time is given on the y-axis, while
the x-axis gives the number of communities ; the lines gives
the different community sizes.

We first focus on the SE-ST results, given by the plots at
Figures 5a, 5b and 5c. Concerning the results of µ-Toksia
2021 for the 0.1 probability setting (Figure 5a), we can ob-
serve that the problems are too easy when the number of
nodes per community is lower than 200 (all solved in few
seconds even for 511 communities) and too hard when it
is above this value (such problems cannot be solved when
there are more than 31 communities). Thus, this setting
does not allow us to draw a clear frontier between the hard
and the too-hard instances. This is also the case for the 0.5
probability setting (Figure 5c) for which the instances are
surprisingly very difficult even for low values of commu-
nity sizes and community counts. This is not an unexpected
result since as noted below, these instances have a special
structure that might prevent µ-Toksia to solve them. By the
way, we discovered that µ-Toksia was not able to prove the
absence of stable extension in any community-based ins-
tance with this density. If such instances are included in
our benchmarks, then µ-Toksia may suffer from this special
kind of instances. Fortunately, the 0.2 case (Figure 5b) per-
fectly fits our needs of frontier as it shows multiple settings
of community sizes and counts are solvable but difficult
(hundreds of seconds required to solve) namely the sets of
511 communities of size 225, the sets of 255 communities
of size 250 and the sets of 63 communities of size 275.

Now, we discuss the SE-PR results, given by the plots at
Figures 6a, 6b and 6c. Just like for SE-ST, the 0.1 probability
setting (Figure 6a) does not seem to be an interesting value
for us since little changes in community sizes makes the
difficulty a lot higher : see e.g. the difference between com-
munities of 175 nodes — almost difficult instances when
there are 511 of them — and 200 nodes — where instances
are too difficult for 255 communities. Things are a little
better for the 0.2 probability (Figure 6b) when considering
communities of size between 225 and 300, but the real inter-
esting setting in this case if the 0.5 probability (Figure 6c).
In this case, we can find at least three cases of different
community sizes for which hard instances exist : the sets of
511 communities of 175 nodes, the sets of 255 communities

of 300 nodes and the sets of 127 communities of 500 nodes.
To conclude this section, it is worth noting that

crusti_g2io generated the instances very fast. For the graph
generation, we took advantage of machines with a higher
number of processor cores. We dedicated to each process
an Intel Xeon Gold 6248 (a 20-cores processor) and 192GB
of RAM. The biggest instances we considered are the ones
with 511 communities of 500 nodes with a probability set-
ting of 0.5, for which the graph admits 255500 nodes and
more than 89 millions edges. For these instances, the graph
generation itself took less than 4s each. A little longer was
necessary to translate the graphs into argumentation frame-
works and store them using the (verbose) APX format on
the hard disk. With these additional translation and writing
times, the average wall-clock time was 19.62s.

8 Conclusion

In this paper, we have defined a new approach for genera-
ting (directed or non-directed) graphs based on the concept
of communities, which are graphs where some subparts of
the graph are highly connected, but are loosely related to
other subparts. Our approach uses a so-called inner/outer
template, i.e. we first generate an outer graph representing
the global structure of the graph, then in each node of the
outer graph we generate an inner graph, and finally we
use a linker to add edges between nodes of inner graphs
which are connected in the outer graph structure. The pro-
posed model is particularly generic and modular, since all
the components (outer graph generator, inner graph gene-
rator and linker) can be replaced by other generators or
linkers. Our model is particularly well suited for abstract ar-
gumentation, since large debates (i.e. large argumentation
frameworks) can naturally be split into sub-debates which
are only connected by a few arguments and attacks. We
have described our open-source tool for the generation of
graphs, and especially we have shown that this tool allows
to generate meaningful argumentation framework instances
with a level of difficulty for standard computational pro-
blems which can be adapted thanks to the choice of some
parameters.

Several avenues for future work can be highlighted. Re-
garding the tool, a natural development direction is to design
an even more generic framework, allowing several levels of
nested graphs (i.e. the inner graph generator could gene-
rate graphs which also follow the inner/outer template). We
also plan to improve the usability of the tool by describing
the generation task in files (using e.g. the YAML or JSON
format) instead of the command-line interface.

Regarding the issue of AF generation, we can improve the
relevance of the tool by incorporating linkers which make
sense in the context of abstract argumentation frameworks
(for instance, we could add edges concerning in priority
arguments which are skeptically accepted w.r.t. some given

(a) SE-ST, ER probability of 0.1

(b) SE-ST, ER probability of 0.2

(c) SE-ST, ER probability of 0.5

Figure 5 – CPU time (in seconds) required by µ-Toksia
2019 to compute a single stable extension for community
graphs of different community sizes and different commu-
nity count. CPU times are an average of 10 values.

(a) SE-PR, ER probability of 0.1

(b) SE-PR, ER probability of 0.2

(c) SE-PR, ER probability of 0.5

Figure 6 – CPU time (in seconds) required by µ-Toksia
2021 to compute a single preferred extension for commu-
nity graphs of different community sizes and different com-
munity count. CPU times are an average of 10 values.

semantics). Another interesting future work consists in pro-
posing generation models for more complex argumentation
frameworks, which would require e.g. graphs with different
kinds of edges or arguments (to incorporate supports [6]
or incompleteness [27]) or graphs with weights associated
with edges [13] or arguments [30].

Acknowledgements

This work has been partly supported by the CPER DATA
Commode project from the “Hauts-de-France” Region, the
ANR projects PING/ACK (ANR-18-CE40-0011) and AG-
GREEY (ANR-22-CE23-0005).

Références

[1] Barabási, A. et R. Albert: Emergence of scaling in
random networks. Science, 286 :509–512, 1999.

[2] Baroni, P., M. Caminada et M. Giacomin: Abstract Ar-
gumentation Frameworks and Their Semantics. Dans
Handbook of Formal Argumentation, pages 159–236.
College Publications, 2018.

[3] Besnard, P. et A. Hunter: Elements of Argumentation.
MIT Press, 2008, ISBN 978-0-262-02643-7.

[4] Beynier, A., Y. Chevaleyre, L. Gourvès, A. Harutyu-
nyan, J. Lesca, N. Maudet et A. Wilczynski: Local
envy-freeness in house allocation problems. Auton.
Agents Multi Agent Syst., 33(5) :591–627, 2019.

[5] Bistarelli, S., F. Rossi et F. Santini: ConArg : A Tool for
Classical and Weighted Argumentation. Dans Proc.
of COMMA 2016. IOS Press, 2016.

[6] Cayrol, C. et M. C. Lagasquie-Schiex: Bipolarity in
argumentation graphs : Towards a better understan-
ding. Int. J. Approx. Reason., 54(7) :876–899, 2013.

[7] Cerutti, F., M. Giacomin et M. Vallati: Generating
Challenging Benchmark AFs. Dans Proc. of COMMA
2014, 2014.

[8] Cerutti, F., M. Giacomin et M. Vallati: Generating
Structured Argumentation Frameworks : AFBench-
Gen2. Dans Proc. of COMMA 2016, 2016.

[9] Chung, F. et Li. Lu: The Average Distance in a Random
Graph with Given Expected Degrees. Internet Math.,
1(1) :91–113, 2003.

[10] Cochez, M., M. Croitoru, P. Marquis et S. Rudolph
(rédacteurs): Proceedings of GKR 2020, tome 12640
de Lecture Notes in Computer Science, 2021.

[11] Cooper, M. C., A. Herzig, F. Maffre, F. Maris et P. Ré-
gnier: The epistemic gossip problem. Discret. Math.,
342(3) :654–663, 2019.

[12] Dung, P. M.: On the Acceptability of Arguments and its
Fundamental Role in Nonmonotonic Reasoning, Lo-
gic Programming and n-Person Games. Artif. Intell.,
77(2) :321–358, 1995.

[13] Dunne, P. E., A. Hunter, P. McBurney, S. Parsons et
M. Wooldridge: Weighted argument systems : Basic
definitions, algorithms, and complexity results. Artif.
Intell., 175(2) :457–486, 2011.

[14] Dvorák, W. et P. E. Dunne: Computational Problems
in Formal Argumentation and their Complexity. Dans
Handbook of Formal Argumentation, pages 631–688.
College Publications, 2018.

[15] Dvorák, W., S. A. Gaggl, A. Rapberger, J. P. Wallner et
S. Woltran: The ASPARTIX System Suite. Dans Proc.
of COMMA 2020, 2020.

[16] Dvorák, W., M. Järvisalo, J. P. Wallner et S. Woltran:
Complexity-sensitive decision procedures for abstract
argumentation. Artif. Intell., 206 :53–78, 2014.

[17] Edunov, S., D. Logothetis, C. Wang, A. Ching et
M. Kabiljo: Generating Synthetic Social Graphs with
Darwini. Dans Proc. of ICDCS, pages 567–577, 2018.

[18] Erdös, P. et A. Rényi: On random graphs. I. Publica-
tiones Mathematicae, 6 :290–297, 1959.

[19] Geilen, N. et M. Thimm: Heureka : A General Heuris-
tic Backtracking Solver for Abstract Argumentation.
Dans Proc. of TAFA 2017, pages 143–149, 2017.

[20] Girvan, M. et M. Newman: Community structure in
social and biological networks. Proc. of the NAS of
the USA, 99(12) :7821–7826, 2002.

[21] Heinrich, M.: The MatrixX Solver For Argumentation
Frameworks. CoRR, abs/2109.14732, 2021.

[22] Kinder, L., M. Thimm et B. Verheĳ: A Labeling Ba-
sed Backtracking Solver for Abstract Argumentation.
Dans Proc. of SAFA 2022, pages 111–123, 2022.

[23] Kolda, T., A. Pinar, T. Plantenga et C. Seshadhri: A
Scalable Generative Graph Model with Community
Structure. SIAM J. Sci. Comput., 36(5), 2014.

[24] Lagniez, J. M., E. Lonca et J. G. Mailly: CoQuiAAS : A
Constraint-Based Quick Abstract Argumentation Sol-
ver. Dans Proc. of ICTAI 2015, pages 928–935, 2015.

[25] Lagniez, J. M., E. Lonca, J. G. Mailly et J. Ros-
sit: Design and Results of ICCMA 2021. CoRR,
abs/2109.08884, 2021.

[26] Leskovec, J., K. Lang, A. Dasgupta et M. Mahoney:
Statistical properties of community structure in large
social and information networks. Dans Proc. of WWW
2008, pages 695–704, 2008.

[27] Mailly, J. G.: Yes, no, maybe, I don’t know : Com-
plexity and application of abstract argumentation
with incomplete knowledge. Argument Comput.,
13(3) :291–324, 2022.

[28] Motik, B., B. Cuenca Grau, I. Horrocks et U. Sat-
tler: Representing ontologies using description lo-
gics, description graphs, and rules. Artif. Intell.,
173(14) :1275–1309, 2009.

[29] Niskanen, A. et M. Järvisalo: `-toksia : An Efficient
Abstract Argumentation Reasoner. Dans Proc. of KR
2020, pages 800–804, 2020.

[30] Rossit, J., J. G. Mailly, Y. Dimopoulos et P. Moraitis:
United we stand : Accruals in strength-based argu-
mentation. Argument Comput., 12(1) :87–113, 2021.

[31] Watts, D. et S. Strogatz: Collective dynamics of
"small-world" networks. Nature, 393 :440–442, 1998.

[32] Wu, X., X. Ying, K. Liu et L. Chen: A Survey of
Privacy-Preservation of Graphs and Social Networks.
Dans Managing and Mining Graph Data, pages 421–
453. 2010.

	Introduction
	Background on Graph Generators
	The Inner/outer Model
	Application to Abstract Argumentation
	Related Works
	The crusti_g2io graph generator
	Using crusti_g2io to generate challenging abstract argumentation problems
	Conclusion

