
Change-Relaxed Active Fairness Auditing

A. Godinot1,2, 3, E. Le Merrer2, C. Penzo3, F. Taïani1, G. Tredan4

1 Université de Rennes
2 Centre Inria de l’Université de Rennes

3 Pôle d’Expertise de la Régulation Numérique
4 LAAS/CNRS

Abstract
The pervasive deployment of user-facing automated deci-
sions systems raises concerns over their impact on soci-
ety. The sheer amount of such online platforms and their
growing complexity highlights the need for automated and
robust audits to assess their impact on users. This paper fo-
cuses on a recent theoretical advance named manipulation-
proofness. It aims at guaranteeing successive audits of a
platform cannot be gamed by the platform, provided the la-
bels returned on the audit dataset do not change.
While this constitutes a decisive step for reliable audits, it is
too restrictive, as models naturally evolve with time in prac-
tice. This paper thus explores how manipulation-proofness
can be adapted to better fit actual scenarios, by studying the
effects of relaxing the constraint on the amount of change
the remote model can operate while being audited. Our re-
sults on the COMPAS dataset demonstrate a request gain
in one of the two models considered, while also noticing
the surprisingly good performance of the random strawman
approach. We believe this constitutes an interesting step for
further attempts to improve reliable and manipulation proof
audits.
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1 Introduction
The pervasive deployment of user-facing automated deci-
sions systems raises concerns over their impact on soci-
ety. The sheer amount of such online platforms and their
growing complexity highlights the need for automated and
robust audits to assess their impact on users. The advent
of highly publicized audits, such as ProPublica’s story on
COMPAS [12] or Reuters study on Amazon’s recruiting
tool [8], has led to the algorithmic audit field gaining sig-
nificant traction. For the public to trust Artificial Intelli-
gence (AI) systems, and more broadly algorithmic decision
systems, we need methods to explain the decision of such
systems [19, 13], certify their implementation [22, 20] and
automatically and robustly detect misconduct [14, 18].
Inspired by "traditional" financial audits, we focus in this
work on external certification audits. In this type of audit,
an external auditor (e.g. a regulator, or an auditing com-

pany) is commissioned by a platform to certify some de-
sirable property (the absence of bias, for example) of its
system. The system consists in a Machine Learning (ML)
model h∗ (see subsection 3.1) which is accessed by users
through an interface (e.g. a web-page or an Application
Programming Interface). To restrict the scope of this work,
we consider that h∗ is a binary classifier. Furthermore, we
assume that the answers presented through the interface are
faithful to that of the model h∗. We assume that the plat-
form does not give access to the weights or implementation
of the model h∗. The goal of the auditor is thus to certify
the system as implemented and as seen by the users. The
only information the auditor knows about the audited sys-
tem is the hypothesis classH of the model h∗ ∈ H. We dub
this setting remote black-box certification. Yan and Zhang
[22] recently proposed a theoretical framework to model
the problem of remote black-box auditing. They provide
an algorithm to select a minimal set of points S to esti-
mate a property µ(h∗) (demographic parity for example) of
the remote model h∗. While the model h∗ behind the API
is allowed to change after the audit, the auditor is guaran-
teed that the value µ(h) of any model h ∈ H that agrees
with h∗ on S will be close to their estimation µ̂(h∗). This
new estimation problem coined manipulation-proof estima-
tion by Yan and Zhang is a step towards robust auditing as
it provides a framework amenable to theoretical analysis.
In practice, even if the type of model stays the same, be-
cause of retraining, arrival of new users or small tweaks,
models served by platforms change over time. Thus, the
requirement that the output of the API on the audit points
does not change is too restrictive in practice. Moreover, Yan
and Zhang only experimented with linear models on small
datasets. In this work, we relax this recent formalization
and empirically analyze its performance.

Contributions. This paper makes the following contribu-
tions. It first reviews the algorithmic audit setup, and recalls
the concept and shortcomings of manipulation proofness
(Sections 1 and 3). It then proposes a relaxation (coined
r-AFA+) on the tolerated audit errors. We then evaluate
this relaxation in Section 5, with two model classes and the
COMPAS dataset, before we conclude.
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Figure 1: Schematic overview of the r-AFA+ algorithm. On the left, S and T are subsets of the input set X . The goal of
the approach is to identify a small set of inputs (left) that quickly reduce the version space (center) to models having close
µ-values (right). Those inputs are iteratively improved to refine an estimate of the property of interest (µ-value).

At each outer iteration (line 2), the algorithm consists in three steps. 1. (black) Train a surrogate ĥ on the current labeled
dataset (S, h∗(S)). 2. (blue) Find dataset T that minimizes the µ-diameter of the version space. 3. (red) Merge T in S,

query the API on T to train a new surrogate ĥ′.

2 Related work
AI audits. The AI audit field seeks to understand Artifi-
cial Intelligence (AI) algorithms as part of a larger socio-
technical system. Most of the published audits include two
phases (see for example [2, 15]). First, the auditor analy-
ses the context of the algorithm: the training data, the users
or the team who built said system. Then, they typically
perform a statistical study to discover potential biases in
the algorithm’s output. Recently, efforts have been made to
formalize requirements dictated by regulatory bodies (such
as the Data Minimization Principle [18]) and provide algo-
rithms to help their enforcement. One challenge of remote
black-box auditing is to limit the number of queries used
to perform the audit. Issuing too few queries prevents any
meaningful analysis but if the auditor requests large bursts
of queries, they risk being blacklisted.

Robust auditing. Audits relying on statistical studies of-
ten make the simplifying assumption that the audited plat-
form is cooperative and honest. While very practical, this is
overly optimistic since there were examples of companies
trying to evade high-stakes audits in the past [11]. With-
out this assumption, many simple audits become theoreti-
cally impossible [21]. To overcome this limit, the notion of
manipulation-proof estimation has recently emerged [22].
Intuitively, this approach aims at constructing an auditing
procedure that is resilient to arbitrary manipulation by the
auditee while making as few assumptions as possible on the
audited target.

Distribution testing. The field of tolerant distribution test-
ing is interested in answering the question: given samples
from an unknown distribution p, is this distribution ϵ1-close
(minq∈P(d, q) ≤ ϵ1) to the set of distributions P or is it
ϵ2-far (minq∈P(d, q) ≥ ϵ2) from it? Some fairness mea-
sures (such as demographic fairness) can be formulated as
the independence between the output of positive labels (e.g.

granting a loan, recruiting a new employee) and sensitive
attributes (e.g. gender, ethnicity, religious beliefs, political
views). Thus, as a specific tolerant distribution test, testing
for independence could certify demographic parity. For an
introduction to distribution testing and its extension to tol-
erant distribution testing, refer to [4] and [5]. It is however
not straightforward how to certify other fairness properties.

Active learning. Active learning is a form of interactive
learning where the learning algorithm can iteratively select
the examples to train on. At each training step, the learn-
ing algorithm can use the performance of the trained model
and past training examples to decide which training exam-
ple to select next in order to optimize the learning process.
The literature on active learning proved that interacting with
the trained model could dramatically reduce learning sam-
ple complexity [10]. Even if the trained model is treated
as a black box, it is possible to iteratively select training
points based on the model’s outputs to reduce the number
of training points needed [7]. These methods cannot be di-
rectly applied to black-box remote auditing because they
need to probe the model on the whole dataset at each itera-
tion, whereas we try to minimize the number of queries to
said model. Yet, the method we present in this work builds
on this idea to select the audit dataset by interacting with a
surrogate of the API instead of the API itself. (We discuss
this notion of surrogate model in more detail in Section 3.)

3 Manipulation proofness with AFA
In this section, we present in more detail the notion
of manipulation-proof estimation introduced by Yan and
Zhang [22] in the context of remote black-box auditing.
We first introduce some key notations and assumptions
and formalize the auditing process as a game between the
auditor and the platform. We then define the notion of
manipulation-proof estimation and present the general intu-



ition behind the AFA algorithm proposed by Yan and Zhang
to solve the auditing game in a manipulation-proof manner.

3.1 Notations and assumptions
We consider a platform that seeks to solve a classification
task (e.g. whether or not to grant a loan) based on user
features (some information regarding the prospective bor-
rower) grouped in a vector x ∈ X . We assume that the
space of all possible inputs—the sample space X—is fi-
nite. Should X not be finite, it is suffices to sample a fixed
number of instances in X and treat them as a finite sample
space. As explained in [7], it is then possible to adapt the
bounds obtained for a finite X .
When the platform trains its model, it effectively chooses
a hypothesis h∗ ∈ H in a set of possible (deterministic)
models—the hypothesis space H. The hypothesis space
could for example be the set of linear binary classifiers
on X . Since the platform solves a classification task, the
set of possible outputs—the output space Y—is also finite.
Therefore, because X and Y are finite, the space YX of all
functions from X to Y (and by extension H ⊂ YX ) is also
finite. For any set S, we write |S| its cardinal and P (S) the
set of all its subsets.
The auditor seeks to test whether the model h∗ used
by the platform respects some desirable property µ :
(P (X ) ,H)→ R. For simplicity, we use the notation abuse
µ(h) = µ(X , h). Define the demographic parity µDP as

µDP(S, h) =
1

|S ∩A|
∑

x∈S∩A

1 {h(x) = 1}−

1

|S ∩Ac|
∑

x∈S∩Ac

1 {h(x) = 1} (1)

where 1 {P} is the indicator function for the predicate P , A
is the set of samples in X with a positive sensitive attribute
and Ac its complementary in X .
We define the Hamming distance dH(h(S), h∗(S)) =
|x ∈ S : h(x) ̸= h∗(x)|. Simply put, the Hamming dis-
tance is the number of points in S on which two hypotheses
(or models) h and h∗ disagree. Finally, for any subset of the
hypothesis class V ⊂ H, the µ-diameter diamµ(V ) is the
largest difference in the value of µ between any two models
in V .

diamµ(V ) = max
h,h′∈V

|µ (h)− µ (h′) | (2)

3.2 The Auditing Game
The auditing process can be modeled as a game between
the auditor and the audited platform. First, the auditor de-
cides on the fairness measure µ : (P (X ) ,H) → R on
which they want to evaluate the platform. We assume the
auditor can directly query the platform’s output on a given
input x ∈ X , either through an API or through scraping. By
gathering outputs on well-chosen inputs, the auditor seeks
to construct an audit dataset S ⊆ X , which the auditor
will then use to estimate how well the platform respects
the fairness measure µ, by using µ̂ = µ(S, h∗) as an esti-
mation of the true value µ(X , h∗). In practice, platforms

regularly retrain their model h∗, for instance to account for
new users or to improve it. As a result, h∗ is likely to evolve
after it has been audited. Thus, constructing a robust esti-
mator intuitively means constructing an estimator that does
not change too much even if the model is slightly modified
after the audit. More formally, this auditing game can be
described as follows:
Phase 1. At time t0, the auditor constructs an audit dataset
S ⊂ X to build its estimator µ̂(S, h∗

t0) by interacting with
the model h∗

t0 served by the platform. The time needed
to construct the audit dataset is supposed to be negligible
and the remote model is assumed not to change during this
phase.
Phase 2. At any time t > t0 after the audit, and for any rea-
son (retraining, new user or even adversarial change), we
allow the model to change slightly. By re-querying the new
model h∗

t on the same dataset S, we verify that answers to
queries in S have not changed dH

(
h∗
t (S), h

∗
t0(S)

)
= 0.

The auditor’s goal is to detect through their estimation
µ̂(S, h∗

t ) when µ(X , h∗
t ) deviates too much from some tar-

get boundary, in which case the certificate must be revoked.

3.3 Manipulation-proof estimation.
The auditor’s algorithm solves the above auditing game if
it can produce an auditing set S such that for all h ∈ H,
if d (h(S), h∗

t (S)) = 0, then the µ-value of h cannot be at
a distance larger than ϵ to h∗

t0 . To formalize the auditor’s
goal, we first define the notion of version space. It is the set
of models h whose output agree with that of h∗ on S.

H (S, h∗) = {h ∈ H : d (h(S), h∗(S)) = 0} (3)

Then, an estimator µ̂(S, h∗) of µ(X , h∗) is said (r, ϵ)-
manipulation-proof i.i.f.

diamµH(S, h∗) < ϵ (4)

The auditor only queries the labels h∗(x) of points x ∈ S
therefore, they can only base their estimation µ̂(S, h∗) of
µ on (S, h∗(S)). Multiple models in H can have the same
answers on S and the auditor does not have any means to
know which one of them is behind the API. Thus, there is
an uncertainty on the true value µ(X , h∗). The µ-diameter
evaluates how well different audit datasets S might lead to a
smaller/larger uncertainty on µ(X , h∗). In their paper, Yan
and Zhang frame the auditing game as a minimax game and
prove a lower-bound on the number of queries required to
reach ϵ-manipulation proofness. Inspired by the Multiplica-
tive Weight Update method [1], they provide a randomized
approximate algorithm AFA (Active Fairness Auditing, see
our adapted version algorithm 1) to compute a solution with
a query competitive ratio of O (log(H) log(X )).
We present in algorithm 1 the core structure of the algo-
rithm proposed in [22] with the modifications discussed in
Section 4. The intuition behind this algorithm is to use the
black-box teaching algorithm introduced in [7]. To avoid
probing the API on the entire X , we assume that we have
access to an oracleO : P (X )→ H providing surrogates of



h∗ trained on S (line 4). The oracleO is assumed to be mis-
take bounded, that is there exits M > 0 such that for any
sequence (xi)i of points from X and their corresponding
labels (yi)i,

∑+∞
k=1 1 {O((x1, . . . , xk))(xk) ̸= yk} ≤ M .

Example of such oracles include the perceptron algorithm
[16] and the halving algorithm [3]. This surrogate is then
used with the black-box teaching algorithm in [7] to find a
subset T of X maximizing diamµH(O(S), T ).

4 Robust auditing in practice: giving
some slack on the radius

Because our goal is to systematically analyze the perfor-
mance of [22] in practice, we had to modify it to account
for more realistic settings. The original AFA algorithm re-
quires that after the audit, the labels of the queried points
must not change. We argue that this assumption needs to
be relaxed for two reasons. First, as we said for practical
reasons the model might change slightly over time, modi-
fying a small fraction of labels. Second, the auditor might
not have access to an exact description of H. This im-
plies that the hypothesis space used for the audit Hsurrogate
does not match the one used by the platform HAPI. Be-
cause of this mismatch, the return condition line 19 might
never be met. For these reasons, we relaxed the condition to
d(h(S), h∗(S)) < r in the definition of the version space
(Equation 3) and adapted the algorithm accordingly. We
name this method r-AFA+ (r-radius Active Fairness Audit-
ing) and provide the pseudo-code in algorithm 1.

H (S, h∗, r) = {h ∈ H : d (h(S), h∗(S)) ≤ r} (5)

Theoretically, it is still unclear how these allowed errors
might influence the query complexity of r-AFA+ compared
to AFA. On one hand it definitely increases the cardinal
of the version space, potentially increasing the µ-diameter
for a given budget, requiring a larger T at each inner iter-
ation. On the other hand, the exit condition of the algo-
rithm (line 19) is less restrictive and decreases the number
of outer iterations (and thus the total number of queries in
S). As this is still preliminary work, we leave a more in-
depth analysis of r-AFA+ for future work, and discuss the
empirical results that follow from this relaxation in the next
section.

5 Evaluation
We now quantify the impact of relaxing AFA with a toler-
ance radius of r changes, with r-AFA+.
Implementation Based on the notebooks provided in the
supporting material of [22] we reimplemented algorithm 1
(with our modifications discussed in section 4). The imple-
mentation differs from the pseudocode in two ways. First,
we modify the termination of the algorithm. The joint re-
quirements for termination of estimated µ-diameter smaller
that ϵ (line 10) and surrogate/API agreement (line 19) are
replaced by the condition that |S| does not exceed the bud-
get. Second, instead of querying all the points in T (line 17)
we only query one of them and re-enter the inner loop.

Algorithm 1 Remote black-box certification with r-AFA+
Require: Hypothesis class H, mistake M -bounded oracle

O, target error ϵ, property µ, confidence δ, radius
r

Ensure: audit dataset S
1: S ← ∅
2: while true do
3: T ← ∅
4: ĥ← O(S)
5: w(x)← 1

|X | , ∀x ∈ X

6: τ(x) ∼ Exp
(
ln
(

M
δ |H|

2
))

7: while true do
8: ▷ Estimate the µ-diameter of the current ver-

sion space ◁

9:
(hmin, hmax)← argmin /maxh µ(h)

s.t. d(h(T ), ĥ(T )) ≤ r
10: if µ(hmax)− µ(hmin) < ϵ then
11: break
12: ∆(hmax, hmin) ={

x ∈ X : hmax(x) ̸= ĥ(x) or hmin(x) ̸= ĥ(x)
}

13: ▷ Multiplicative weight update ◁
14: while

∑
x∈∆(hmax,hmin)

w(x) ≤ 1 do
15: w(x)← 2w(x), ∀x ∈ ∆(hmax, hmin)
16: T ← {x ∈ X : w(x) ≥ τ(x)}
17: query h∗ on T
18: S ← S ∪ T
19: if ĥ ∈ H (h⋆, S, r) then
20: return S

Dataset We run our experiments on three datasets : stu-
dent performance [6], COMPAS [12] and the reconstructed
adults dataset [9]. In this preliminary version of our work,
we only showcase results on the COMPAS dataset. COM-
PAS is a tool used by the US Department of Justice to eval-
uate the risk of recidivism among defendants, based on in-
dividual features such as age, gender, localization, origins
amongst others. The COMPAS dataset consists in a list of
6172 defendants with their individual features and recidi-
vism status.

Classifier model We run our experiments with multiple
API hypotheses classes adapted to the classification task on
tabular data: linear regression, support vector machines, de-
cision trees and gradient boosted decision trees. Again, be-
cause it is a preliminary version of our work, we only anal-
yse here the case of decision trees and linear classifiers, as
implemented in scikit-learn [17]. We perform clas-
sical hyperparameter optimization with 5-fold validation to
train the model behind the API.

Auditing algorithms The simplest algorithm we test is a
random sampling baseline. Given a budget b, b points are
uniformly sampled in X without replacement to form the
audit dataset S. The second baseline is the AFA algorithm.
Then we test our method r-AFA+ with two values of r.

Evaluation results In Figure 2, we plot the value of the µ-
diameter diamµH(h∗, S, 5) against the audit budget |S|. On
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Figure 2: µ-diameter of the version space for budgets ranging from 200 to 600 requests. On the left, H is the set of linear
classifiers. On the right, H is the set of decision trees. The figure compares two baselines (random sampling and original
AFA) against r-AFA+ for two radius values (r = 2 and r = 5).

the right,H is the set of decision trees. The figure compares
the two baselines (random sampling and original AFA) and
our method. Note that we are evaluating the audit algo-
rithms in the more realistic setting with r = 5 > 0.

In the case of linear classifiers, both our methods and the
baselines tend to a null µ-radius. Our methods even re-
duce slightly the convergence speed of the µ-radius to 0
(2-AFA+ needs ∼ 50 more queries that random and AFA
to reach a µ-diameter of 0.25). Yet, after 200 queries, all
methods become equivalent in terms of µ-diameter. In ad-
dition, this plot highlights the performance of the simplest
random baseline: it is the best performing method on this
(dataset, api model) combination.

The second situation gives a totally different picture of the
comparison between AFA and r-AFA+. While AFA per-
forms as well as the random baseline, our methods allow
to save up to 400 queries (∼ 66%) to reach a µ-diameter
of 0.25. The intuition behind the performance gap of r-
AFA+ between the decision tree and linear APIs is linked
to the regularity of the decision function. If the decision
boundary is smoother (as is the case for linear models), two
models that do not agree on a given set of points would
not agree on the remaining points with a high probability.
On the other hand, if the decision boundary is very irreg-
ular (as is the case for decision trees), two models that do
not agree on a set of points might still be very close on the
other points. Thus in this case, it seems that allowing for
more disagreement (a.k.a. increasing r) between ĥ and the
µ-optimal model h in line 9 helps to include models similar
to the API h∗ even if ĥ is far from it in the beginning.

The takeways from this evaluation are that i) the gains in
terms of budget are highly hypothesis dependant, 2) AFA
is never substantially better than random, which questions
its utility (high complexity w.r.t. random selection), and 3)
r-AFA+ is at least as competitive as random and AFA on
the long run (i.e. for small diameters).

6 Conclusion
Being robust to slight model changes is a practical require-
ment to take into account the practices of deployed ML
systems that often evolve. In this context, the promising
auditing approach of producing one-shot certificates might
frequently require auditors to re-audit the target model af-
ter each slight update. This paper explores how certificates
can be designed to be robust to such modifications and pre-
sented preliminary results that support this direction.
We have empirically shown that the r-AFA+ relaxation can
provide an interesting gain over AFA in one scenario, and
that the random and computationnaly cheap strawman ap-
proach is also to be considered. We leave to futurework a
full characterization of the model families on which these
observations generalize. Futurework also includes the study
of the impact of removing the assumption that the hypothe-
sis class is known by the auditor. More precisely, allowing
for a restricted hypothesis space while preserving the accu-
racy of audits seems like an important next step for reliable
and practical audits.
As a final remark, throughout this work, we used the term
"Active Auditing" coined by the authors of [22]. Yet since,
this algorithm guarantees that if the platform does not
change H then we can "easily" verify that our estimated
value still holds. Thus, a more accurate term would be "ac-
tive certification". This splits the goal of algorithmic au-
diting: trying to build certificates for platforms to defend
themselves, or finding estimators that are able to uncover
misconduct robust to concealment attempts from the plat-
form.
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