
Replication and Extension of Schnappinger’s Study on Human-level
Ordinal Maintainability Prediction Based on Static Code Metrics

Sébastien Bertrand 1,2,4, Silvia Ciappelloni 4, Pierre-Alexandre Favier 1,2,3, Jean-Marc André 1,2,3

1 Université de Bordeaux
2 IMS Laboratory

3 ENSC, Bordeaux INP
4 onepoint, Sud-Ouest

s.bertrand@groupeonepoint.com

Résumé
Dans le cadre d’un projet de recherche sur l’évaluation
de la maintenabilité des logiciels en collaboration avec
l’équipe de développement, nous avons voulu explorer les
dissensions entre les développeurs et le facteur confondant
de la taille. A cette fin, cette étude a reproduit et étendu une
étude récente de Schnappinger et al. avec la partie publique
de son jeu de données et les métriques extraites de l’outil
basé sur les graphes Javanalyser. L’ensemble du proces-
sus de traitement a été automatisé, de l’extraction des mé-
triques à l’entraînement des modèles d’apprentissage au-
tomatique. L’étude a été étendue en prédisant la mainte-
nabilité continue pour prendre en compte les dissensions.
Puis, tous les entraînements ont été dupliqués pour éva-
luer l’influence globale de la taille de la classe. Au final,
l’étude originale a été reproduite avec succès. De plus, de
bonnes performances ont été obtenues pour la prédiction
de la maintenabilité continue. Enfin, la taille de la classe
n’était pas suffisante pour une prédiction fine de la mainte-
nabilité. Cette étude montre la nécessité d’explorer la na-
ture de ce qui est mesuré par les métriques du code. Elle
constitue également la première étape dans la construction
d’un modèle de maintenabilité.

Mots-clés
Maintenabilité des logiciels, prédiction de la maintenabi-
lité, classification ordinale, jugement d’expert, apprentis-
sage automatique.

Abstract
As part of a research project concerning software maintai-
nability assessment in collaboration with the development
team, we wanted to explore dissensions between develo-
pers and the confounding effect of size. To this end, this
study replicated and extended a recent study from Schnap-
pinger et al. with the public part of its dataset and the me-
trics extracted from the graph-based tool Javanalyser. The
entire processing pipeline was automated, from metrics ex-
traction to the training of machine learning models. The
study was extended by predicting the continuous maintaina-
bility to take account of dissensions. Then, all experimental

shots were duplicated to evaluate the overall influence of
the class size. In the end, the original study was success-
fully replicated. Moreover, good performance was achieved
on the continuous maintainability prediction. Finally, the
class size was not sufficient for fine-grained maintainabi-
lity prediction. This study shows the necessity to explore the
nature of what is measured by code metrics, and is also the
first step in the construction of a maintainability model.

Keywords
Software Maintainability, Maintainability Prediction, Ordi-
nal Classification, Expert Judgment, Machine Learning.

1 Introduction
According to the ISO 25010 [20], software maintainabi-
lity is defined as the efficiency with which the develop-
ment team can fix a defect within a software, or implement
an evolution according to a change of the needs. Software
maintenance represents an important part of software deve-
lopment costs in time [5, 3, 10, 33, 9]. Assessing the main-
tainability of a piece of software is therefore important to
ensure the control of these costs.
Our research project concerns software maintainability as-
sessment in collaboration with the development team. Our
goal is to pinpoint maintainability problems within a Java
program, while taking into account team preferences and
potential disagreements between developers.
Most studies use static code metrics to predict software
maintainability [1, 12]. Very often, they study the source
code at the class-level, because it is both a convenient and
sizeable way to talk about code [35]. One group of stu-
dies uses the number of changed code lines as a proxy for
the maintenance effort [22, 25, 29, 31, 39, 40]. Another
group of studies is based on the prediction of expert as-
sessments [18, 19, 34, 38]. However, the relation between
the number of changed code lines and maintainability is not
established [35]. Kafura and Reddy even states that develo-
pers tend to avoid modification of complex part of the pro-
gram during maintenance [21]. That is why, in this work,
we focused on prediction of expert assessments.

https://orcid.org/0000-0003-0409-9880
https://orcid.org/0009-0005-4572-9537
https://orcid.org/0009-0006-5844-5020
https://orcid.org/0000-0001-9844-4694


A study from Schnappinger et al. [37] explore human-
level maintainability prediction based on static code me-
trics, specifically the distinction between easy and hard-
to-maintain code and a more fine-grained ordinal classifi-
cation problem. This study is based on a recent high qua-
lity software maintainability dataset [35, 36], also built by
Schnappinger et al. . This dataset targets Java classes and
represents maintainability as an ordinal four-part scale per-
centage agreement. However, only the open-source part of
the dataset is publicly available. Additionally, due to a very
large number of existing tools [30, 2] and their lack of
agreement [4, 28, 8], the extraction of metrics from the da-
taset is quite hazardous. In addition, the original study uses
numerous tools, including unpublished ones [37]. So to ra-
tionalize the extraction of metrics, we chose to use Javana-
lyser [4] which we developed to extract metrics solely ba-
sed on the structure of the source code. Javanalyser 1 is an
open-source graph-based static code analysis tool that leve-
rages declarative programming as formal definition of me-
trics. Moreover, the study only reports performance results,
but the implementation to train the machine learning mo-
dels is not available. Therefore, our first goal was to check
we could independently replicate the findings of Schnap-
pinger et al. with a full open-source setup available to the
community, including Javanalyser for metrics extraction.
Then, the study from Schnappinger et al. models maintai-
nability prediction as an ordinal classification problem. The
maintainability category of a Java class is determined by
taking the most probable among experts as the response
variable. However, while building their dataset, Schnap-
pinger et al. notes that disagreement between experts is
frequent [35]. To be able to work in collaboration with de-
velopment teams, we wanted to predict potential disagree-
ment. This is why we chose to additionally study a conti-
nuous representation of software maintainability.
Finally, the class size in lines of code is highly correlated to
many metrics [11, 13, 23, 26, 41] and is one of the most
used metric for maintainability prediction [37]. From an
engineering point of view, this is very surprising because
poor maintainability seems intuitively more connected to a
poorly built control flow or data flow. Moreover, modern in-
tegrated development environments make it easy to extract
code from a class to a new one. Therefore, class size may
be an unreliable measure to detect complex maintainability
problems. So, we tried to assess its overall influence when
predicting maintainability with this dataset.
In summary, the research questions replicated from the ori-
ginal study are :

— RQ1 : How well can classifiers distinguish between
easy and hard-to-maintain code?

— RQ2 : How good is the performance of the machine
learning models considering an ordinal label ?

The extension part of our study is related to these two re-
search questions :

— RQ3 : How good is the performance of the machine

1. https://gitlab.com/onepoint/research/
javanalyser

learning models considering continuous maintaina-
bility?

— RQ4 : What is the overall influence of class size on
maintainability prediction?

In this study, we extracted a total of 33 metrics from the
dataset with Javanalyser, and we replicated the study of
Schnappinger et al. following the same overall method.
Then we implemented an additional setup using regres-
sors instead of classifiers to test performance on continuous
maintainability. Finally, we duplicated the experiments with
only the class size as input, to assess its overall influence.
Lastly, we launched a total of almost 20 000 experimental
shots, each consisting of 150 individual machine learning
trainings. Along this study, we logged every training results
to help potential further research. To allow for the definition
and evaluation of new metrics and maintainability models,
we open-sourced the implementation and the results of our
experiments under the MIT licence (see section 3).

2 Method
This section begins by presenting the core replication of
Schnappinger et al. ’s study, that is the dataset and the base
experimental setup. Then the extension is presented with
the prediction of a continuous maintainability and the size
experiments.

2.1 Replication
2.1.1 Dataset
The present study uses the public part of Schanappinger’s
dataset [35, 36]. Basically, it consists of a listing of 304
classes with their source code, drawn from 5 open-source
projects : ArgoUML 2, Art of Illusion 3, Diary Manage-
ment 4, JUnit 4 5, and JSweet 6. Each Java class is label-
led along 5 axis : readability, understandability, complexity,
modularity and overall maintainability. Each Java class was
assessed by several experts independently of its relation to
other classes.
As the original study, this work focused on the overall main-
tainability. It is represented as a set of 4 probabilities corres-
ponding to the evaluation of the experts on a 4-class Likert-
scale. Each probability corresponds to the ratio over the
total for this Java class. The original study refers to these
probabilities with the labels Class-A, Class-B, Class-C, and
Class-D, where Class-A is highly maintainable and Class-
D is poorly maintainable. The table 1 shows that this dataset
is heavily unbalanced, both in terms of maintainability la-
bels distribution and project data points. For instance, Diary
Management has only 11 data points, none with a Class-D
maintainability assessment.
The extraction of metrics was done with Javanalyser [4].
Some minor modifications of the source code of ArgoUML

2. https://github.com/argouml-tigris-org/
argouml

3. http://www.artofillusion.org/
4. https://sourceforge.net/projects/

diarymanagement/
5. https://junit.org/junit4/
6. http://www.jsweet.org/

https://gitlab.com/onepoint/research/javanalyser
https://gitlab.com/onepoint/research/javanalyser
https://github.com/argouml-tigris-org/argouml
https://github.com/argouml-tigris-org/argouml
http://www.artofillusion.org/
https://sourceforge.net/projects/diarymanagement/
https://sourceforge.net/projects/diarymanagement/
https://junit.org/junit4/
http://www.jsweet.org/


TABLE 1 – Dataset distribution
Project Class-A Class-B Class-C Class-D Total
ArgoUML 34 25 11 4 74
Art of Illusion 10 20 25 18 73
Diary Management 7 2 2 0 11
JUnit 4 60 12 1 0 73
JSweet 63 5 2 3 73
Total 174 64 41 25 304

and Art of Illusion were necessary to make them parsable.
Every modification is provided on the public repository as
diff files. Javanalyser builds the graph of the code by fol-
ding and simplifying the abstract syntax tree, and then que-
ries that graph to extract metrics. As a result, it computes
a slightly different version of class size in lines of code,
which is the number of statements (NOS), that is a formal
count of statement nodes within the code graph. It is worth
noting that even such a simple metric has many variants
among metric tools [4], whereas Javanalyser implements
formal definition of metrics.

2.1.2 Experimental setup from Schnappinger et al.
Here is presented a short version of the experimental setup
of the study of Schnappinger et al. [37]. Their study pre-
sents two classification problems :

— A binary separation problem to distinguish between
easy and hard-to-maintain code, where Class-A and
Class-B are considered to be maintainable, whereas
Class-C and Class-D are not ;

— An ordinal classification problem to predict the ma-
jority class assigned by the experts.

The original study preprocesses metrics (features) in three
ways. First, oversampling is used to account for the unba-
lanced dataset. As Schnappinger et al. , k-means-SMOTE
was used with the implementation described in [24] and
set k=2 due to the small dataset. Second, normalisation or
standardisation of features is applied to potentially improve
performance. Third, feature selection based on the mutual
information between the metrics and the target is leveraged
to select only a subset of available features. Each of these
preprocessing techniques was implemented as a conditional
setting and can be combined.
In their pre-study, Schnappinger et al. identify the six
most promising algorithms for their setup [37] : Gradient
Boosting [15], Ada-Boost [17], Extremely Randomized
Trees [16], Logistic Regression, Random Forests [7] and
the K-Nearest Neighbor classifier. Additionally, for the or-
dinal classification problem, they use 7 metamodels ba-
sed on these base classifiers (or their regressor versions).
One is the binary decomposition proposed by Frank and
Hall [14]. The others are proposed by Schnappinger et al. :
three chained binary classifiers, two probabilities classifiers
and a rounded regressor classifier. For comparison, a base-
line classifier that always predicts the majority class was
implemented for each problem. All these classifiers were
implemented using scikit-learn [32].
The original study uses many performance metrics to eva-
luate the models. The binary classification problem reports

its results with the F-score, and the Area Under the recei-
ver operating characteristic Curve (AUC) which is conside-
red as a better choice for binary classification [6]. The or-
dinal classification problems uses micro-averaged accuracy
(ACC), Cohen’s Kappa (Cκ) and Matthews Correlation Co-
efficient (MCC). It also uses Mean-Square Error (MSE) by
defining all intervals on the ordinal scale to be 1.
Every experiment was fully configured by a CSV file,
which also stored the results. Each experiment was ran-
domly sampled to explore the hyperparameters space wi-
thout being too time-consuming. In total, 20, 000 experi-
ments were sampled. Each experiment was repeated with
30 different random seeds. Like the original study, project-
wise cross-validation was used, However the performance
depends heavily on the chosen test project, because the da-
taset is heavily unbalanced between projects. That is why,
a shuffled stratified 5-fold cross-validation was implemen-
ted for better statistical comparison. The reported results
correspond to an average of these runs along the standard
deviation.

2.2 Extension
2.2.1 Continuous maintainability
After the core replication, the problem of the continuous
maintainability prediction was added. Continuous maintai-
nability is defined as the expected value of each maintai-
nability class. The scores ranging from 0 for Class-A to 3
for Class-D were assigned. This method allowed us to take
into account disagreement between experts, for instance a
continuous maintainability of 2.5 may correspond to half
the experts assigning Class-C and the other half Class-D.
Disagreement between experts could help to diagnose non-
trivial maintainability problem.
For this problem, a baseline classifier that always predicts
whole dataset expected maintainability was built, which is
a maintainability of 0.75. As the other problems, the Mean-
Square Error (MSE) was used for comparison. The mo-
dels were also evaluated against the Mean Absolute Error
(MAE), the Median Absolute Error (MedAE) and the R2

score (R2).

2.2.2 Size experiments
Finally, the overall influence of class size on maintainabi-
lity prediction was explored. For that purpose, each expe-
riment was duplicated and fed only the class size to the mo-
dels. Moreover, as the variance with the project-wise cross-
validation was quite important, the shuffled stratified 5-fold
cross-validation was necessary for a better statistical com-



TABLE 2 – Results of the project-wise binary separation
Classifier F-Score AUC
Average expert 0.88 0.83
Baseline 0.87 ±0.14 0.50 ±0
Baseloc 0.92 ±0.07 0.67 ±0.17
Original study 0.91 0.82
This study 0.93 ±0.06 0.90 ±0.10

FIGURE 1 – The influence of size on maintainability

parison.
To truly challenge the prediction power of the trained mo-
dels, some additional baseline classifier were implemen-
ted, hereafter referred to as ‘baseloc’ classifiers. They adapt
their prediction in function of the class size. For instance,
for the binary separation problem, the baseloc classifier pre-
dicts good maintainability if the size is under 275 lines of
code, otherwise it predicts poor maintainability.

3 Results
This section presents the best results of nearly 20 000 ex-
perimental shots, each consisting of 150 individual ma-
chine learning trainings, that is 5 folds (project-wise
or stratified) times 30 seeds. The dataset, the metrics
extracted, the processing code, and all the results are
available under the free (as in freedom) MIT licence
at https://gitlab.com/onepoint/research/
maintainability-dataset-analysis.
All our results are presented with the notation mean ±std,
std being the standard deviation. As the original study, the
tables 2, 3, 4, 5 present the best score that was obtained by
a classifier, that is two scores on the same row may not have
been performed by the same classifier.

The table 2 presents the replication of the first problem from
Schnappinger et al. ’s study. The table 3 presents the repli-
cation of the ordinal classification. Like in the original pa-
per, the measured performance depends heavily on the test
project. That is why, k-fold cross validation results were in-
cluded to overcome differences between projects.

Continuous maintainability ranges from 0 to 3, lower being

better. As shown by the figure 1, the increase of class size
clearly set a floor value for maintainability. The table 4 pre-
sents the results of continuous maintainability prediction.
The performances of a perfect ordinal classifier is included
for comparison with the ordinal classification problem. This
problem was not tested by Schnappinger et al. ’s study.

Finally, the table 5 presents the comparison of the perfor-
mance of models when fed with only the class size vs. all
metrics. This table is meant to be read vertically to com-
pare baseline, baseloc, size-only and all-metrics classifiers
for each problem. For simplicity, only the k-fold case is pre-
sented, the variability on the project-wise case being too
large.

4 Discussion
This section begins by discussing class-level maintainabi-
lity prediction problems. Then, disagreement between ex-
perts will be addressed as they are at the heart of these pro-
blems. Finally, the overall influence of class-size will shed
a new light on the way forward.

4.1 Class-Level Maintainability Prediction
As shown by tables 2 and 3, the study of Schnappinger et
al. [37] was successfully replicated with the metrics extrac-
ted by Javanalyser. On the binary separation problem, the
best classifiers outperformed the baseline and baseloc clas-
sifiers, and an average expert. On the ordinal classification
problem, the best classifiers outperformed the baseline and
baseloc classifiers, and reached human-level performance.
Moreover, concerning the continuous maintainability pro-
blem extension, the best classifiers outperformed the base-
line and baseloc classifiers. There is no data concerning an
average expert on this last problem. Thus, with respect to
the first three research questions (RQ1, RQ2, RQ3), trained
models performed well on binary separation, ordinal classi-
fication and continuous maintainability regression (respec-
tively).
However, the addition of the standard deviation showed
that the observed performance with project-wise cross-
validation was highly unstable. As a reminder, the stan-
dard deviation needs to be tripled to give a 99% confi-
dence interval. This was due to the unbalanced dataset (see
table 1), indeed a k-fold cross-validation approach shows
better deviations. In fact, oversampling cannot compensate
for imbalance between projects when using project-wise
cross-validation. Moreover, the table 3 shows that the re-
sults are very close to the original study with a k-fold cross-
validation setting. The original study includes 9 projects
within its dataset (5 open-source and 4 closed-source). To
reach production-grade standard deviations, the training da-
taset would need Java classes drawn from more projects,
until no differences are observed between project-wise and
k-fold cross-validation.

4.2 Dissent Between Experts
The dataset is built with a four-part Likert scale to not
overwhelm the experts [35]. However, when a class is glo-
bally maintainable, a minor problem could still be present

https://gitlab.com/onepoint/research/maintainability-dataset-analysis
https://gitlab.com/onepoint/research/maintainability-dataset-analysis


TABLE 3 – Results of the ordinal classification
Classifier ACC MSE Cκ MCC
Average expert 0.70 0.41 0.53 0.53
Project-wise
Baseline 0.58 ±0.27 1.39 ±1.30 0 ±0 0 ±0
Baseloc 0.68 ±0.15 0.53 ±0.43 0.37 ±0.23 0.38 ±0.24
Original study 0.73 0.31 0.51 0.53
This study 0.74 ±0.12 0.39 ±0.32 0.46 ±0.18 0.47 ±0.18
K-Fold
Baseline 0.57 ±0.01 1.49 ±0.03 0 ±0 0 ±0
Baseloc 0.73 ±0.05 0.36 ±0.08 0.54 ±0.08 0.54 ±0.08
Original study 0.75 0.30 0.60 0.60
This study 0.77 ±0.04 0.27 ±0.06 0.61 ±0.07 0.61 ±0.07

TABLE 4 – Results of the continuous maintainability regression
Classifier MSE MAE MedAE R2

Project-wise
Baseline 0.85 ±0.50 0.79 ±0.18 0.82 ±0.20 -0.67 ±0.66
Baseloc 0.39 ±0.25 0.43 ±0.15 0.24 ±0.07 0.21 ±0.46
This study 0.28 ±0.22 0.33 ±0.14 0.19 ±0.12 0.41 ±0.44
K-Fold
Baseline 0.91 ±0.04 0.80 ±0.02 0.73 ±0.01 0 ±0.01
Baseloc 0.29 ±0.07 0.37 ±0.05 0.19 ±0.01 0.68 ±0.08
This study 0.18 ±0.05 0.26 ±0.04 0.10 ±0.04 0.80 ±0.06
Perfect ordinal 0.02 0.08 0.02 0.98

TABLE 5 – Size-Only vs All-Metrics k-fold results comparison
Binary sep. Ordinal class. Continuous maint.

Classifier (AUC) (MSE) (MSE)
Average expert 0.83 0.41 —
Baseline 0.50 ±0 1.49 ±0.03 0.91 ±0.04
Baseloc 0.84 ±0.05 0.36 ±0.08 0.29 ±0.07
Size-Only 0.95 ±0.03 0.35 ±0.08 0.27 ±0.06
All-Metrics 0.97 ±0.02 0.27 ±0.06 0.18 ±0.05



within it. For instance a method could be slightly too long
and should be split in two. Such problems would lead to
disagreement between expert, some assigning the Class-A
and some the Class-B.
On a continuous scale, the expected maintainability of a
class subject to disagreement is between two integers. This
disagreement occurs quite often as shown by the figure 1.
When building their dataset, Schnappinger et al. report di-
sagreement between experts in 73.4% of the ratings [35].
By measuring the distance between ratings, they estimate
that significant disagreement occurs in 17.2% of the cases,
and strong disagreement occurs in 1.2% of the cases.
A perfect ordinal classifier would have a MSE of 0.02
on the continuous maintainability prediction (and recipro-
cally). This shows that these problems are not far apart.
However, the MSE significantly improves from the ordi-
nal classification problem to the continuous maintainabi-
lity problem. This shows that predicting contentious cases
is more effective than predicting the winner (the majority
class). Despite this fact, a coarse binary separation to de-
tect the most problematic classes is very effective. This can
be seen on the figure 1 by drawing a horizontal line going
through the middle of the continuous maintainability scale
(1.5).

4.3 The Overall Influence of Class-Size
Size-only models show surprisingly effective performances
(see table 5). In fact on the binary separation and the ordi-
nal classification, size-only classifiers outperformed an ave-
rage expert. On the binary separation problem, other me-
trics only marginally improve performances. Concerning
the forth research question (RQ4), this confirms that class
size is a very effective metric to predict maintainability.
There is no consensus on the confounding effect of class
size [11, 13, 23]. Kitchenham argues that each line of code
as a whole has the same probability of exhibiting a de-
fect [23]. Nevertheless, table 5 shows other metrics help
to improve performances on the ordinal classification and
continuous maintainability problems. Thus, whatever the
correlation with class size, other metrics tend to be useful
for finer problems.
On that matter, Lemberger and Morel states that aggrega-
tion of metrics is not natural [27]. From that point of view,
it is not obvious to compute the class-level cyclomatic com-
plexity by summation of the complexity of its methods. It
would clearly be misleading to define the intelligence quo-
tient of a team by the sum of the intelligence quotients of its
members. The definition of scale-invariant metrics would
be a necessary step to assess the influence of each of them.

5 Conclusions
This study successfully replicated the study of Schnappin-
ger et al. on human-level ordinal maintainability predic-
tion [37]. However, the standard deviation remained very
high for the project-wise ordinal classification problem. All
the processing code, the dataset and the results are publicly

available to allow further research. 7 The extension of the
study with the continuous maintainability problem shows
that all baseline and baseloc classifiers are outperformed
by trained models. Finally, the analysis showed that mo-
dels trained with only the class size are very efficient to
detect coarse-grained maintainability problems and surpri-
singly outperformed an average expert. However, the class
size is not enough when the problem is sufficiently com-
plex, like the ordinal classification or the continuous main-
tainability. This study shows that there is a need to better
design the maintainability prediction problem and to bet-
ter define metrics in order to go beyond class-level analysis
and to be able to pinpoint maintainability problems within
classes.
Future works include building size-robust datasets with
classes from many projects. Designing better scale-
invariant metrics for static code analysis will be essential to
go further in maintainability prediction and analysis. Then,
executing controlled experiments to assert the individual in-
fluence of these metrics over the maintainability would be
very insightful to complement the experimental data collec-
ted in real situations. In the end, such metrics should be part
of a wider maintainability model.

Acknowledgments
We thank our collaborators at onepoint 8 for their insightful
advices, in particular Alexandra Delmas, Jérôme Fillioux,
Denis Maurel, Sylvain Métayer, and Guillaume Meurisse.

Références
[1] Hadeel Alsolai and Marc Roper. A systematic li-

terature review of machine learning techniques for
software maintainability prediction. Information and
Software Technology, 119 :106214, March 2020.

[2] Luca Ardito, Riccardo Coppola, Luca Barbato, and
Diego Verga. A Tool-Based Perspective on Software
Code Maintainability Metrics : A Systematic Litera-
ture Review. Scientific Programming, 2020 :1–26,
August 2020.

[3] Rajiv D. Banker, Srikant M. Datar, Chris F. Ke-
merer, and Dani Zweig. Software complexity and
maintenance costs. Communications of the ACM,
36(11) :81–94, November 1993. https://doi.
org/10.1145/163359.163375.

[4] Sébastien Bertrand, Pierre-Alexandre Favier, and
Jean-Marc André. Building an operable graph re-
presentation of a Java program as a basis for au-
tomatic software maintainability analysis. In EASE
’22 : Proceedings of the International Conference on
Evaluation and Assessment in Software Engineering
2022, EASE 2022, pages 243–248, Gothenburg, Swe-
den, June 2022. Association for Computing Machi-
nery. https://doi.org/10.1145/3530019.
3534081.

7. https://gitlab.com/onepoint/research/
maintainability-dataset-analysis

8. https://www.groupeonepoint.com/

https://doi.org/10.1145/163359.163375
https://doi.org/10.1145/163359.163375
https://doi.org/10.1145/3530019.3534081
https://doi.org/10.1145/3530019.3534081
https://gitlab.com/onepoint/research/maintainability-dataset-analysis
https://gitlab.com/onepoint/research/maintainability-dataset-analysis
https://www.groupeonepoint.com/


[5] Barry W. Boehm, John R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In Ray-
mond T. Yeh and C. V. Ramamoorthy, editors, Procee-
dings of the 2nd International Conference on Software
Engineering, San Francisco, California, USA, Octo-
ber 13-15, 1976, pages 592–605. IEEE Computer So-
ciety, 1976. http://dl.acm.org/citation.
cfm?id=807736.

[6] Andrew P. Bradley. The use of the area un-
der the ROC curve in the evaluation of ma-
chine learning algorithms. Pattern Recogni-
tion, 30(7) :1145–1159, July 1997. https:
//www.sciencedirect.com/science/
article/pii/S0031320396001422.

[7] Leo Breiman. Random Forests. Machine Learning,
45(1) :5–32, October 2001. https://doi.org/
10.1023/A:1010933404324.

[8] Dennis Breuker, Jacob Brunekreef, Jan Derriks, and
Ahmed Nait Aicha. Reliability of software metrics
tools. page 14, November 2009.

[9] Celia Chen, Reem Alfayez, Kamonphop Srisopha,
Barry Boehm, and Lin Shi. Why Is It Important
to Measure Maintainability and What Are the Best
Ways to Do It ? In 2017 IEEE/ACM 39th Internatio-
nal Conference on Software Engineering Companion
(ICSE-C), pages 377–378, May 2017.

[10] Don Coleman, Bruce Lowther, and Paul Oman. The
application of software maintainability models in in-
dustrial software systems. Journal of Systems and
Software, 29(1) :3–16, April 1995.

[11] Khaled El Emam, S. Benlarbi, N. Goel, and S. N. Rai.
The confounding effect of class size on the validity of
object-oriented metrics. IEEE Transactions on Soft-
ware Engineering, 27(7) :630–650, July 2001.

[12] Sara Elmidaoui, Laila Cheikhi, Ali Idri, and Alain
Abran. Empirical Studies on Software Product Main-
tainability Prediction : A Systematic Mapping and Re-
view. e-Informatica Software Engineering Journal,
13(1) :141–202, 2019.

[13] W.M. Evanco. Comments on "The confounding ef-
fect of class size on the validity of object-oriented me-
trics". IEEE Transactions on Software Engineering,
29(7) :670–672, July 2003.

[14] Eibe Frank and Mark Hall. A Simple Approach to
Ordinal Classification. In Luc De Raedt and Peter
Flach, editors, Machine Learning : ECML 2001, vo-
lume 2167, pages 145–156, Freiburg, Germany, 2001.
Springer.

[15] Jerome H. Friedman. Stochastic gradient boos-
ting. Computational Statistics & Data Analy-
sis, 38(4) :367–378, February 2002. https:
//www.sciencedirect.com/science/
article/pii/S0167947301000652.

[16] Pierre Geurts, Damien Ernst, and Louis Wehenkel.
Extremely randomized trees. Machine Learning,

63(1) :3–42, April 2006. https://doi.org/10.
1007/s10994-006-6226-1.

[17] Trevor Hastie, Saharon Rosset, Ji Zhu, and
Hui Zou. Multi-class AdaBoost. Statis-
tics and Its Interface, 2(3) :349–360, 2009.
https://www.intlpress.com/site/pub/
pages/journals/items/sii/content/
vols/0002/0003/a008/abstract.php.

[18] Péter Hegedűs, Tibor Bakota, László Illés, Gergely
Ladányi, Rudolf Ferenc, and Tibor Gyimóthy. Source
Code Metrics and Maintainability : A Case Study. In
Tai-hoon Kim, Hojjat Adeli, Haeng-kon Kim, Heau-
jo Kang, Kyung Jung Kim, Akingbehin Kiumi, and
Byeong-Ho Kang, editors, Software Engineering, Bu-
siness Continuity, and Education, Communications in
Computer and Information Science, pages 272–284,
Berlin, Heidelberg, 2011. Springer.

[19] Péter Hegedűs, Gergely Ladányi, István Siket, and
Rudolf Ferenc. Towards Building Method Level
Maintainability Models Based on Expert Evaluations.
In Tai-hoon Kim, Carlos Ramos, Haeng-kon Kim,
Akingbehin Kiumi, Sabah Mohammed, and Domi-
nik Ślęzak, editors, Computer Applications for Soft-
ware Engineering, Disaster Recovery, and Business
Continuity, Communications in Computer and Infor-
mation Science, pages 146–154, Berlin, Heidelberg,
2012. Springer.

[20] ISO/IEC. Systems and software engineering — Sys-
tems and software Quality Requirements and Eva-
luation (SQuaRE) — System and software qua-
lity models. Standard ISO/IEC 25010 :2011,
ISO/IEC, March 2011. https://www.iso.org/
standard/35733.html.

[21] Dennis Kafura and Geereddy R. Reddy. The Use
of Software Complexity Metrics in Software Mainte-
nance. IEEE Transactions on Software Engineering,
SE-13(3) :335–343, March 1987.

[22] Arvinder Kaur and Kamaldeep Kaur. Statistical
comparison of modelling methods for software
maintainability prediction. International Jour-
nal of Software Engineering and Knowledge
Engineering, 23(06) :743–774, August 2013.
https://www.worldscientific.com/
doi/abs/10.1142/S0218194013500198.

[23] Barbara Kitchenham. What’s up with software me-
trics ? - A preliminary mapping study. Journal of Sys-
tems and Software, 83(1) :37–51, 2010.

[24] György Kovács. Smote-variants : A py-
thon implementation of 85 minority over-
sampling techniques. Neurocomputing,
366 :352–354, November 2019. https:
//www.sciencedirect.com/science/
article/pii/S0925231219311622.

[25] Lov Kumar, Debendra Kumar Naik, and San-
tanu Kumar Rath. Validating the Effecti-

http://dl.acm.org/citation.cfm?id=807736
http://dl.acm.org/citation.cfm?id=807736
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/abstract.php
https://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/abstract.php
https://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/abstract.php
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.worldscientific.com/doi/abs/10.1142/S0218194013500198
https://www.worldscientific.com/doi/abs/10.1142/S0218194013500198
https://www.sciencedirect.com/science/article/pii/S0925231219311622
https://www.sciencedirect.com/science/article/pii/S0925231219311622
https://www.sciencedirect.com/science/article/pii/S0925231219311622


veness of Object-Oriented Metrics for Pre-
dicting Maintainability. Procedia Computer
Science, 57 :798–806, January 2015. https:
//www.sciencedirect.com/science/
article/pii/S1877050915020086.

[26] Meir Manny Lehman, Dewayne E. Perry, and Juan F.
Ramil. Implications of evolution metrics on software
maintenance. In 1998 International Conference on
Software Maintenance, ICSM 1998, Bethesda, Mary-
land, USA, November 16-19, 1998, page 208. IEEE
Computer Society, 1998.

[27] Pirmin Lemberger and Médéric Morel. Two Measures
of Code Complexity. pages 195–206. January 2013.

[28] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saa-
rimäki, Savanna Lujan, and Fabio Palomba. A Critical
Comparison on Six Static Analysis Tools : Detection
Agreement and Precision. SSRN Electronic Journal,
2022. https://www.ssrn.com/abstract=
4044439.

[29] Wei Li and Sallie Henry. Object-Oriented Metrics
that Predict Maintainability. Journal of Systems and
Software, 23(2) :111–122, November 1993. http:
//www.sciencedirect.com/science/
article/pii/016412129390077B.

[30] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe.
Comparing software metrics tools. In Proceedings of
the 2008 International Symposium on Software Tes-
ting and Analysis - ISSTA ’08, page 131, Seattle, WA,
USA, 2008. ACM Press.

[31] Ruchika Malhotra and Kusum Lata. An empiri-
cal study on predictability of software maintainabi-
lity using imbalanced data. Software Quality Jour-
nal, 28(4) :1581–1614, December 2020. https://
doi.org/10.1007/s11219-020-09525-y.

[32] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Gri-
sel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. Scikit-learn : Machine
Learning in Python. Journal of Machine Learning Re-
search, 12(85) :2825–2830, 2011. http://jmlr.
org/papers/v12/pedregosa11a.html.

[33] Markus Pizka and Thomas Panas. Establi-
shing Economic Effectiveness through Software
Health-Management. May 2009. https:
//www.semanticscholar.org/paper/
Establishing-Economic-Effectiveness-through-Pizka-Panas/
744c02e1cce4aa3228ace764bb0d97029dd33303.

[34] Nicolino J. Pizzi, Arthur R. Summers, and Witold Pe-
drycz. Software Quality Prediction Using Median-
Adjusted Class Labels. In Proceedings of the 2002 In-
ternational Joint Conference on Neural Networks, vo-
lume 3, pages 2405–2409 vol.3, Honolulu, HI, USA,
May 2002.

[35] Markus Schnappinger, Arnaud Fietzke, and Alexan-
der Pretschner. Defining a Software Maintainability
Dataset : Collecting, Aggregating and Analysing Ex-
pert Evaluations of Software Maintainability. In 2020
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 278–289, Ade-
laide, Australia, September 2020. IEEE.

[36] Markus Schnappinger, Arnaud Fietzke, and Alexan-
der Pretschner. A Software Maintainability Data-
set. https://figshare.com/articles/
dataset/A_Software_Maintainability_
Dataset/12801215/3, 2020.

[37] Markus Schnappinger, Arnaud Fietzke, and Alexan-
der Pretschner. Human-level Ordinal Maintainability
Prediction Based on Static Code Metrics. In EASE
2021 : Evaluation and Assessment in Software En-
gineering, pages 160–169, Trondheim, Norway, June
2021. ACM.

[38] Markus Schnappinger, Mohd Hafeez Osman, Alexan-
der Pretschner, and Arnaud Fietzke. Learning a clas-
sifier for prediction of maintainability based on sta-
tic analysis tools. In Proceedings of the 27th In-
ternational Conference on Program Comprehension,
ICPC ’19, pages 243–248, Montreal, Quebec, Canada,
May 2019. IEEE Press. https://doi.org/10.
1109/ICPC.2019.00043.

[39] Chikako van Koten and Andrew Gray. An application
of Bayesian network for predicting object-oriented
software maintainability. Information and Software
Technology, 48(1) :59–67, January 2006. https:
//www.sciencedirect.com/science/
article/pii/S0950584905000339.

[40] Yuming Zhou and Hareton Leung. Predicting object-
oriented software maintainability using multivariate
adaptive regression splines. Journal of Systems and
Software, 80(8) :1349–1361, August 2007. https:
//www.sciencedirect.com/science/
article/pii/S0164121206003372.

[41] Yuming Zhou, Baowen Xu, Hareton Leung, and Lin
Chen. An in-depth study of the potentially confoun-
ding effect of class size in fault prediction. ACM
Transactions on Software Engineering and Methodo-
logy, 23(1) :10 :1–10 :51, February 2014. https:
//doi.org/10.1145/2556777.

https://www.sciencedirect.com/science/article/pii/S1877050915020086
https://www.sciencedirect.com/science/article/pii/S1877050915020086
https://www.sciencedirect.com/science/article/pii/S1877050915020086
https://www.ssrn.com/abstract=4044439
https://www.ssrn.com/abstract=4044439
http://www.sciencedirect.com/science/article/pii/016412129390077B
http://www.sciencedirect.com/science/article/pii/016412129390077B
http://www.sciencedirect.com/science/article/pii/016412129390077B
https://doi.org/10.1007/s11219-020-09525-y
https://doi.org/10.1007/s11219-020-09525-y
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.semanticscholar.org/paper/Establishing-Economic-Effectiveness-through-Pizka-Panas/744c02e1cce4aa3228ace764bb0d97029dd33303
https://www.semanticscholar.org/paper/Establishing-Economic-Effectiveness-through-Pizka-Panas/744c02e1cce4aa3228ace764bb0d97029dd33303
https://www.semanticscholar.org/paper/Establishing-Economic-Effectiveness-through-Pizka-Panas/744c02e1cce4aa3228ace764bb0d97029dd33303
https://www.semanticscholar.org/paper/Establishing-Economic-Effectiveness-through-Pizka-Panas/744c02e1cce4aa3228ace764bb0d97029dd33303
https://figshare.com/articles/dataset/A_Software_Maintainability_Dataset/12801215/3
https://figshare.com/articles/dataset/A_Software_Maintainability_Dataset/12801215/3
https://figshare.com/articles/dataset/A_Software_Maintainability_Dataset/12801215/3
https://doi.org/10.1109/ICPC.2019.00043
https://doi.org/10.1109/ICPC.2019.00043
https://www.sciencedirect.com/science/article/pii/S0950584905000339
https://www.sciencedirect.com/science/article/pii/S0950584905000339
https://www.sciencedirect.com/science/article/pii/S0950584905000339
https://www.sciencedirect.com/science/article/pii/S0164121206003372
https://www.sciencedirect.com/science/article/pii/S0164121206003372
https://www.sciencedirect.com/science/article/pii/S0164121206003372
https://doi.org/10.1145/2556777
https://doi.org/10.1145/2556777

	Introduction
	Method
	Replication
	Dataset
	Experimental setup from Schnappinger et al. 

	Extension
	Continuous maintainability
	Size experiments


	Results
	Discussion
	Class-Level Maintainability Prediction
	Dissent Between Experts
	The Overall Influence of Class-Size

	Conclusions

