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Résumé
Pour effectuer des requêtes utiles et intéressantes sur les
ontologies biomédicales en OWL avec un raisonneur, il
est nécessaire de les peupler et d’ajouter de nouveaux ax-
iomes. Ce travail vise à analyser les comptes rendus hos-
pitaliers, disponibles sous forme de texte brut, en com-
binant une procédure déductive qui exploite une certaine
régularité explicite dans leur structure avec un mécanisme
d’apprentissage inductif. Les nouveaux axiomes ajoutés à
la TBox et les assertions de la ABox résultant de ce pro-
cessus d’analyse sont utilisés pour enrichir une ontologie
biomédicale sélectionnée. Cela permet aux médecins, phar-
maciens ou patients d’effectuer des requêtes sur l’ontologie
enrichie en utilisant un raisonneur OWL afin d’obtenir des
réponses, par exemple sur la façon dont les médicaments
sont utilisés pour le traitement des maladies dans les hôpi-
taux.
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Abstract
To perform useful and interesting queries on biomedical on-
tologies in OWL with a reasoner, it is necessary to enhance
them by populating directly their classes, properties, and
adding new axioms. This work aims to analyse discharge
summaries in raw text by combining a deductive proce-
dure which exploits some explicit regularity in their struc-
ture with an inductive learning mechanism. New TBox ax-
ioms and ABox assertions resulting from this analysis pro-
cess are used to enhance a selected biomedical ontology.
This allows physicians, pharmacists or patients to perform
queries on the enhanced ontology by using an OWL rea-
soner in order to obtain answers, for instance on how drugs
are used for treatment of diseases in the hospitals.
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1 Introduction
Numerous biomedical ontologies have been designed to
provide standardized terminologies used for recording clin-
ical details of patients. SNOMED CT [9] is one of the
most complete biomedical ontologies which covers vari-

ous medical domains such as diagnostics, diseases, medi-
cations, anatomy, treatment. The main use of SNOMED
CT so far is to offer to clinicians a nomenclature for cre-
ating medical documents which can be exchanged between
different health care providers and researchers. However,
the use of SNOMED CT as an OWL ontology allowing
for powerful reasoning tasks remains very limited. For in-
stance, one can straightforwardly use an OWL reasoner to
check whether a class defined in the ontology is subsumed
by another one, but it is less obvious to use such a rea-
soner to discover potentially conflicting portions of knowl-
edge such as AbleToUseMedication, UnableToUseMed-
ication, AllergicTo because of the absence of individuals
and negated classes, properties from the ontology. This is-
sue might be related to the modelling problematic [10] of
individuals of classes such as Disease, Drug in an ontol-
ogy. The tricky thing is that we cannot completely define
a disease as an independent object, and there does not exist
any nomenclature that assigns a name to every manufac-
tured drug. As opposed to classes Disease and Drug, it
is quite relevant to use names or the INSEE numbers (in
France) to model individuals of class Patient. For instance,
a clinician can use a convivial interface to add the follow-
ing assertion in Description Logics [2], which is the basis
for OWL, for stipulating that Anne is a patient:

Patient(Anne) (1)
where Patient is a class and Anne an individual. The point
is that if Patient is populated then Disease and Drug are
so indirectly thanks to the following OWL axioms:

{Anne} v ∃sufferFrom. Diabetes (2)
{Anne} v ∃medicatedWith. HumulinInsulin (3)

Axiom (2) tells us that Anne suffers from Diabetes. This
means that there does exist an individual of class Diabetes
which implies all symptoms specific to Anne’s diabetes.
Thus, this individual is indirectly created. In the same way,
Axiom (3) defines indirectly without naming an individual
of class HumulinInsulin which has all chemical and bio-
logical characteristics specific to the insulin taken by Anne.

It is common that the ontology is shared by several clin-
icians. Assume that one of them knows that Anne is al-
lergic to HumulinInsulin. Therefore, she/he adds the fol-
lowing axiom for stipulating that Anne should not take any



HumulinInsulin:
{Anne} v ∀medicatedWith.¬HumulinInsulin (4)

If two Axioms (3) and (4) are simultaneously present in
the ontology, an OWL reasoner can discover inconsistency.
This may prevent the clinician who tried to add Axiom (3)
from introducing it to the ontology, and can help her/him to
choose another insulin for Anne, for instance, IsophaneIn-
sulin to which Anne is not allergic:

{Anne} v ∃medicatedWith.IsophaneInsulin (5)
Note that the detected inconsistency is caused by both the
conflicting knowledge as well as the presence of the indi-
vidual Anne. Indeed, if the left-hand side of Axioms (3)
and (4) is replaced by Patient, the ontology remains con-
sistent.
We have shown an example where enhancing SNOMED
CT by populating some classes can make it more ex-
ploitable in terms of reasoning. Such a task of enhancing
SNOMED CT would require medical data sources which
involve most basic concepts such as patient, disease, drug.
A considerable volume of clinical knowledge is contained
in electronic health records (EHR) in natural language. This
knowledge is adapted to be read by a human, but is not
easily adapted to tasks such as bulk querying, since the in-
formation is not structured. Extracting structured informa-
tion from EHR is a task that has received a lot of interest
from the medical knowledge engineering community over
the past two decades. In this work, we use discharge sum-
maries (DS), parts of EHRs, for enhancing SNOMED CT.
The main contribution of the present paper consists in
proposing a method which extracts knowledge from medi-
cal texts, and formalizes the extracted knowledge as OWL
assertions and axioms in order to enhance an existing
biomedical OWL ontology. The feasibility of the method
is established by experiments which consist of analyzing a
dataset of 697 discharge summaries and generating about
10,000 OWL axioms and assertions. The obtained experi-
mental results which are rigorously evaluated provide some
hint on how to improve the method. We also present some
use-cases to show how such an enhanced ontology can be
exploited to answer DL queries with an OWL reasoner.
Named Entity Recognition and Linking in medical texts
goes back to 1988 [6] and has been implemented by dif-
ferent systems using the basic bricks of Natural Language
Processing (tokenization, sentence splitting, POS-tagging,
stemming, gazetteer lookup): MetaMap [1], OBA [3], Bio-
YODIE [7]. They were originally designed to perform
very well on corpora of scientific literature, which gener-
ally feature standard text with few errors. Systems have
also been designed with a focus on extraction information
from EHRs, where sloppy syntax, abbreviations, and ty-
pos are frequent: cTAKES [13], MTCE [15]. Sytems using
state-of-the-art NLP technologies, like cTAKES or most re-
cent versions of MetaMap, perform fairly well on narrative
text in normalized EHR, with an average F1-measure of 0.9
[12].
The NER feature implemented in spaCy [17, 16, 8] pro-
vides a powerful tool for analysing biomedical and clinical
texts in order to recognize terms or concepts about diseases

or medications. As any neuron-network based tool for NLP,
spaCy relies on the notions of word vectors and feature
functions. The former encodes different syntactical and se-
mantic contexts where the words occur in the training texts
while the latter tells NER how to predict assignments be-
tween entities and terms occurring in new texts by using
word vectors. In this paper, we use spaCy to assign an ab-
stract entity (label) to a contiguous span of tokens (terms)
occurring in discharge summaries. For example, medicat-
edWith can be assigned to penicillin, insulin, folic acid if
they occur in the medication section of a discharge sum-
mary.

2 The approach
The proposed method for enhancing a biomedical ontol-
ogy with knowledge from discharge summaries consists of
two stages corresponding to Deductive Component (DC)
and Inductive Component (IC). The first stage extracts from
each discharge summary the sections each of which refers
to diseases, medications, or drugs to which the patient is
allergic. This stage takes advantage of some explicit regu-
larity in the structure of discharge summaries. The second
stage uses spaCy to detect relationships from a patient to
the diseases, allergies and medications recorded in the cor-
responding section extracted from her/his discharge sum-
mary in the first stage. In this second stage, we have chosen
SNOMED CT to which Inductive Component adds OWL
assertions and axioms created directly from the relation-
ships previously detected such as patient-disease, patient-
medications and patient-allergies.
The discharge summary of a patient is often written by the
clinician who cared for the patient. It contains important
information about the hospital visit of the patient such as
(i) why she/he came into hospital, (ii) the results of any
tests she/he had, (iii) the treatment she/he received, (iv)
any changes to her/his medication. For example, most of
discharge summaries in the dataset analysed in this paper
contain several sections each of which refers to a kind of
information such as identity of the patient, diagnostics on
admission and discharge, drugs prescribed during hospi-
talization. Each section is usually started by a section ti-
tle such as “PRINCIPAL DIAGNOSIS", “DIAGNOSTICS
ON ADMISSION", “DISCHARGE MEDICATION". The
body of each section is in raw text with eventual abbre-
viated terms used in medicine1, for instance HTN stands
for Hypertension. Note that the body of sections such as
“DISCHARGE DIAGNOSTICS", “DISCHARGE MEDI-
CATIONS" is freely written with irregularities and incoher-
ent information. This makes analysis tasks for extracting
concepts and terms much more challenging.
A Deductive Component takes discharge summaries in in-
put and segments them into sections referring to diagnos-
tics, medications and allergies. This segmentation is based
on the fact that each such section starts with a specific
section title (with some exceptions). Thanks to this reg-

1https://en.wikipedia.org/wiki/List_of_medical_
abbreviations



RECORD #106886
ALLERGIES: Penicillin caused a rash.
PRINCIPAL DIAGNOSIS: STATUS POST
STAPHYLOCOCCUS ENDOCARDITIS
DISCHARGE DIAGNOSIS: INFECTION/RULE
OUT ENDOCARDITIS
...
DISCHARGE MEDICATIONS: Tylenol 650 mg
p.o. q.4h. p.r.n. headache , ...

Figure 1: An extract from a discharge summary

ularity (that’s why it is called deductive) in the structure
of discharge summaries, we can develop scrips in Linux
Shell/Python in order to extract expected sections from a
discharge summary. For instance, if Deductive Component
takes the discharge summary in Figure 1 as input, the fol-
lowing sections can be extracted :

RECORD #106886

ALLERGIES: Penicillin caused a rash.

PRINCIPAL DIAGNOSIS: STATUS POST
STAPHYLOCOCCUS ENDOCARDITIS

DISCHARGE DIAGNOSIS: INFECTION/RULE
OUT ENDOCARDITIS
...

DISCHARGE MEDICATIONS: Tylenol 650 mg
p.o. q.4h. p.r.n. headache , ...

Extracted sections resulting from this component allow to
reduce the search space for detecting relationships from
a patient to the diagnostics and medications recorded in
her/his discharge summary. Indeed, the contextual infor-
mation would be independently found in each section, and
thus, it is relevant that relationships of patient-medications
should be extracted from the medication section rather than
the diagnostics section.
An Inductive Component uses the statistical tool spaCy2

(that’s why it is called inductive) to detect relationships
such as patient-diseases, patient-medications and patient-
allergies from the sections extracted by Deductive Com-
ponent. The most challenging feature of this task con-
sists of irregularities in the way the interesting terms oc-
cur in the text. For instance, we can realize in the sec-
tion DISCHARGE MEDICATIONS in Figure 1 that if we
wish to detect drug names then only terms Tylenol, Ven-
tolin, Beclovent are interesting. Moreover, when analyz-
ing the section PRINCIPAL DIAGNOSIS in Figure 1, we
expect a composite term such as STAPHYLOCOCCUS
ENDOCARDITIS rather than one-word terms. In addi-
tion, if there is negated information included in a section
such as RULE OUT ENDOCARDITIS in the section DIS-
CHARGE DIAGNOSIS, then the term ENDOCARDITIS
should be assigned to a negated entity.
To deal with these irregularities in the extracted sections, it
is needed to use an approach which should not be based on

2https://spacy.io

deterministic or deductive principle but rather on an induc-
tive method implemented in spaCy. Such a method relies
on syntactical and semantic similarities between what it has
learnt from training texts and what it meets in new texts. If
a term occurring in a context learnt from training texts is as-
signed to an entity, then other terms occurring in the same
context would be assigned to the same entity.
In order that spaCy predicts an assignment of a term in-
cluded in an extracted section to an entity, it is needed to
enhance a core model by using a set of training examples.
Such examples are manually created by annotating repre-
sentative sections selected from the extracted sections. The
annotation of the text in an example tells spaCy which
terms occurring in the text are assigned to an entity. When
training a model for spaCy with several examples, it does
not just memorize these examples but comes up to a theory
which can be statistically generalized and used to predict
similar assignments in new sections referring to the same
topic. Figure 2 presents a training example in json format.
[ " DISCHARGE MEDICATIONS: Tylenol
650 mg p.o. q.4h. p.r.n. ,
Amphojel 30 mL p.o. t.i.d. one-half
hour before meals , ciprofloxacin 500
mg ...",
{"entities":[[24, 31,
"medicatedWith"],[59, 67,
"medicatedWith"],[115, 128,
"medicatedWith"],[238, 248,
"medicatedWith"]]}]

Figure 2: A training example in JSON format for spaCy
In Figure 2, the raw text in the section DISCHARGE
MEDICATIONS is manually annotated by indicating all
drug names which should be assigned to the entity med-
icatedWith. For instance, the annotation [24, 31,
"medicatedWith"] tells spaCy that Tylenol located
between the indexes 24 to 31 should be assigned to medi-
catedWith. This example teaches to spaCy not only that
Tylenol, Amphojel, ciprofloxacin,vancomycin should be
assigned to medicatedWith, but also that other terms oc-
curring in the text should not be assigned to medicated-
With. Moreover, if there are other terms (in other texts)
occurring in the same context as that of Tylenol, Am-
phojel, ciprofloxacin,vancomycin, then they should be
also assigned to medicatedWith. That means we need to
choose representative examples among all extracted sec-
tions for training examples. Therefore, other training ex-
amples should be chosen such that drug names occur in a
text with a different writing style and different vocabulary
used. The annotation of representative training examples is
a time-consuming task because spaCy would need a few
hundred examples for training on a kind of text such as dis-
charge summaries. Since the objective of the paper is just
to show feasibility of our method, we have chosen and an-
notated about 50 representative sections for each entity suf-
ferFrom, medicatedTo and allergicTo. These sections are
extracted from about 696 discharge summaries.
The following figure shows the axioms and assertions ob-



tained in Descition Logics which can be straightforwardly
converted in OWL.
Patient(#161159)
acute_renal_ failure v Disease
{#161159} v ∃sufferFrom.acute_renal_failure
Patient(#432852)
vitamin_C v Drug
{#432852} v ∃medicatedWith.vitamin_C
Patient(#191371)
Penicillin v Drug
{#191371} v ∃allergicTo.Penicillin

To query on an OWL ontology, we can use an expressive
query language [11] which allows variables to occur in
queries. To the best of our knowledge, no engine which
supports such a query language with an expressive frag-
ment of OWL is available. To deal with DL queries on the
enhanced ontology, we use a Web-based platform, namely
ONTOREV [5, 4], based on HermiT [14] as OWL reasoner.
This platform allows to perform some consuming-resource
operations on large ontologies thanks to powerful servers.
For instance, it offers to users an end-point for executing
common DL queries that may require high performance in
computation. The main goal of the present work is not
about querying on a general OWL ontology. Therefore, we
present briefly in this subsection some examples of queries
which aim to raise awareness of the use of OWL ontolo-
gies in terms of reasoning. Since the full SNOMED CT is
very large, we had to take from it just a small portion of the
class hierarchy including only concepts related to the terms
extracted from the discharge summaries. This makes exper-
iments for reasoning on the enhanced ontology is possible.
In the sequel, we present some interesting queries expressed
in Description Logics which can be sent to the platform
and get results via a Web interface. These queries can be
straightforwardly translated to those in Manchester Syntax
for testing with ONTOREV. First, if a clinician would like
to know all patients who suffer from Diabetes and related
diseases, then she/he can use the following queries.

Query 1: Find all patients who suffer from
diabetes

In DL query: Find all instances of the concept
∃sufferFrom.Diabetes

Result: There are at least 3 patients.3

Explanations: If a patient #X is included in the result
because there is an assertion
∃sufferFrom.Diabetes(#X) that was
added to the ontology.

The clinician now wishes to check whether a patient was
medicated with a drug to which she/he is allergic. For this,
the clinician can find all patients who are allergic to for
instance Aspirin, and display allergens related to Aspirin
with the following queries.

3There may be more patients in the results if the extracted terms are
normalized. For example, we can observe that there are different terms
such as Diabetes, DIABETES, Diabetes Mellitus, etc. which are extracted
from the discharge summaries.

Query 2: Find all patients who are allergic to
Aspirin

DL query : Find all instances of the concept
∃allergicTo.Aspirin

Results: There are at least 24 patients
Query 3: Assume that #X is a patient noted in

the result of Query 2. Find all drugs
which are more general than Aspirin to
which #X is allergic.

In DL query: Find all super classes of Aspirin
Result: Salicylate, Benzoic_acid

Benzoic_acid_derivative
Drug_allergen

Explanation: The classes in the result are due to
subsumption relationships defined in
SNOMED CT.

Next, the clinician can use the following queries to display
all patients who are allergic and medicated with Aspirin.

Query 4: Find all patients who are allergic and
medicated with Aspirin

DL query : Find all instances of the concept
∃allergicTo.Aspirinu

∃medicatedWith.Aspirin
Results: There is at least one patient #24933
Query 5: Assume that a patient who is allergic to

a drug cannot be medicated with it.
What happens in this case ?

Add axiom: Is the ontology with the axiom
∃allergicTo.Aspirin
v ∀medicatedWith.¬Aspirin

is consistent ?
Result: No
Explanation: ∀medicatedWith.¬Aspirin(#24933)

contradicts
∃medicatedWith.Aspirin(#24933)

All these queries can be reproduced with the Web-based
platform accessible via limicsb.univ-paris13.
fr:8080/ontorev. The ontology4 is automatically
loaded when clicking on “Load" button. With “More Infos"
button, users can display the concept names, assertions, ax-
ioms, etc. of the ontology. With “DL query & Entailment"
button, one can query on the ontology by using Manchester
Syntax. For Query 5, users need to add the new axiom to
the ontology with “Add New Infos" button, then click on
“Add with Manchester Syntax" for entering the axiom, and
check consistency of the modified ontology with “Check
Consistency" button.

3 Experiments and Evaluations
In this section, we demonstrate feasibility of our method
by experiments on a dataset of 696 discharge summaries

4The enhanced ontology is not downloadable since its content is built
from the dataset made available by Harvard Medical School, which is not
freely accessible,



from NLP Research Data Sets which are made available
by Harvard Medical School5. From these 696 discharge
summaries, Deductive Component extracted 646 diagnosis
sections, 670 medication sections and 571 allergy sections.
Since the allergic sections in the discharge summaries are
usually short, almost allergens are correctly detected even
if the negated information occurs in these sections such as
“No known allergy", “The patient has no known drug al-
lergies". We put in Figure 3 the number of axioms and as-
sertions obtained by using our procedure over the sections
extracted.

696 discharge summaries Axioms Asser.
DIAGNOSIS ON ADM/DISC 900 2,214
MEDICATIONS ON ADM/DISC 609 4,512
ALLERGY 372 878

Figure 3: The number of OWL axioms and assertions de-
tected from the dataset.
We can observe that assertions are more many than axioms
since a drug can be prescribed for several patients, or sev-
eral patients can suffer from the same disease. In the se-
quel, we present separately the evaluations of diagnostics
(diseases) and medications (drugs) extracted by the NER in
spaCy (or spaCy for short).
For the evaluation of the results extracted from diagnostics
sections, an expert takes randomly 50 from 696 discharge
summaries in the dataset, read them blindly and extract
from them all sections related to diagnostics. Then, the di-
agnostics extracted by the expert are compared with those
extracted by spaCy. A true positive (TP) is a diagnostic
extracted by spaCy and expected by the expert. A false
positive (FP) is a diagnostic extracted by spaCy and not
expected by the expert. A false negative (FN) is a diagnos-
tic not extracted by spaCy but expected by the expert. The
evaluation results of the diagnostic extractions are given in
Figure 4.

50 discharge summaries Expected TP FP FN
Extracted Diagnostics 408 259 123 149
Extracted Medications 423 217 54 152

Figure 4: Results of extracted diagnostics and medications
Among 123 FPs detected by the expert, we can observe that

• there are 56 terms (diagnostics) which are wrongly de-
composed such as “goiter" instead of “multinodular
goiter", “type 2" instead of “diabetes mellitus type 2".

• there are 14 terms which are wrongly composed such
as “hypertension morbid obesity" instead of 2 distinct
diagnostics “hypertension" and “morbid obesity"

• there are 47 terms which are not diagnostics. For in-
stance, ABVD is a treatment but not a diagnostic

For the evaluation of the results extracted from medication
sections, the expert applies the same method as described
above to 50 discharge summaries taken randomly from 696

5https://portal.dbmi.hms.harvard.edu/

discharge summaries in the dataset. The evaluation results
of the medication extractions are also given in Figure 4.

Precision Recall F-Mea.
Diagnostics Extraction 0.72 0.61 0.66
Medication Extraction 0.80 0.59 0.695

Figure 5: Recall and precision from the previous results
The low recall measure for the medications extractions
might come from the fact that the extracted sections related
to medications are not well delimited or they are truncated.
A better performance may be expected if the borders of sec-
tions in a discharge summary are more precisely determined
by the extractor in Deductive Component.

4 Conclusion and Future Work
We have presented a method for enhancing an OWL
biomedical ontology by adding OWL axioms and assertions
extracted from discharge summaries. Such a method makes
the ontology more useful in terms of reasoning because
users can query on it to get more information on relation-
ships between medical concepts and to discover conflicting
knowledge “encoded" in medical texts. This method can be
applied to enhance OWL ontologies in another domain such
as enhancing an ontology on (i) user profiles from Curric-
ula Vitae or (ii) foods and nutrition from cooking recipes.
The main idea is that a document like discharge summary is
usually associated with an identifier that represents an ob-
ject in real-world such as a patient, a candidate or a cook-
ing recipe. Such a document should contain semantic rela-
tionships from this object to concepts described in the doc-
ument. In this case, the structure of the document com-
posed of different sections defines the semantics of these
relationships. For instance, if a section such as “medica-
tions at discharge" is included in the discharge summary
of a patient, then this implies a semantic relationship of
“this patient is medicated with drugs given in this section".
Our method relies on Deductive and Inductive Components
which use two complementary techniques to extract sec-
tions from each document, and detect concepts in each ex-
tracted section. The former takes advantage of explicit reg-
ularity in the structure of documents in order to segment
them into portions in raw text while the latter uses a statistic
approach to recognize terms in each portion whose meaning
is related to the topic of the portion in question.
For future work, one of the most promising paths towards
improving this method is modelling contextual information
contained in the text. First, we will try to improve mod-
elling temporal and modal context in order to get a better
understanding of the patients’ medical timeline, and be able
to take into account mentions of risks or suspiscion (instead
of either erroneously counting them as positives, or discard-
ing them and losing information).
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