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Résumé
Il y a un intérêt croissant pour évaluer les troubles
neurologiques au stade précoce de la découverte de
médicaments. Cependant, ces conditions sont difficiles
à surveiller en raison d’une compréhension insuffisante
de leur mécanisme sous-jacent et de leur nature plutôt
asymptomatique. La découverte de biomarqueurs
spécifiques et complémentaires pour la toxicité du système
nerveux périphérique est donc très précieuse. Dans ce
but, une nouvelle source de données est créée par nos
partnenaires pharmacologue universitaires et industriels
que nous analysons dans cet article. Nous proposons
un flux de travail pour analyser, extraire et combiner
les indicateurs prédictifs sur deux ensembles de données
in vivo. Un ensemble de techniques d’apprentissage
automatique et de fouilles de données ont été utilisées pour
extraire des informations neuropathogènes d’une liste de
biomarqueurs.
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Abstract
There is a growing interest in assessing neurological
disorders in early stage of drug discovery. However,
those conditions are difficult to monitor due to a weak
understanding of their underlying mechanism and their
rather asymptomatic nature. The discovery of specific and
complementary biomarkers for Peripheral nervous system
(PNS) toxicity is therefore highly valuable. For this purpose
a novel data source is created by academic and industrial
expert partners that we analyse in this paper. We propose
a workflow to analyse, extract and combine the predictive
indicators on two sets of in vivo data. A range of machine
learning and data mining techniques were used to extract
neuropathogenic information from the compiled list of
biomarkers.
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1 Introduction
Chemotherapy-induced peripheral neuropathy (CIPN) is a
common adverse effect of neurotoxic anticancer drugs (e.g.
platinum derivatives, taxanes, vinca alkaloids, bortezomib
and thalidomide) on the peripheral nervous systems (PNS).
CIPN symptoms correspond to a distal and symmetric
neuropathy with paresthesia (tingling, numbness) and
dysesthesia (neuropathic pain). CIPN may last several
years after the end of anticancer therapy [4], and can
profoundly decrease the quality of life of patients [12,
11]. No gold standard is clearly defined for screening
and treatment of CIPN [3]. Peripheral nervous system
toxicity (PNS Tox) is poorly predicted by the current in
vitro and in vivo preclinical studies that are performed
during the research and experimental procedures. The
study presented in this paper is related to the NeuroDeRisk
project (Innovative Medicines Initiative (IMI2)), whose
aim is to provide novel, validated tools for improving the
preclinical prediction of various effects of pharmaceuticals
on the nervous system, and to de-risk drug candidates. In
this paper we are solely focusing on the data perspective
and the main contribution can be summarised as follow:

• Performing thorough analysis on two sets provided by
the project of in-vivo data

• Performing pre-processing techniques as creating
new features for temporal data, exploring several
missing value techniques to generate missing values,
heterogenous features (nominal, continuous, temporal
data).

• The most influencing features were selected to build an
in silico predictive model able to discriminate animal
models.



• Established a correlation between different molecular,
behavioral and histological endpoints.

The rest of the paper is organized as follows: Section 2
describes the dataset along with its challenges and issues.
Section 3 presents the general workflow and outlines its
modules along with the experimental results. Finally,
Section 4 presents the conclusions drawn from the study
and outlines directions for future work.

2 Dataset description, challenges &
issues

The dataset was generated from the in-vivo experiments
conducted as part of the NeuroDeRisk’s project by 5
different academic and pharmaceutical partners (MSD,
Novartis, SARD, Clermont-Auvergne University (UCA)
and University of Florence (UNIFI)) on 7 different drugs
(acrylamide, cisplatin, doxorubicin, Nova1, oxaliplatin,
paclitaxel and vincristine) using 2 animal species (rat and
mouse). As every partner did not necessarily sample the
same parameters / features, the dataset is heterogeneous.
Some partners used the same drug with different species,
or different drugs with the same species, and used the same
drug as another partner but with different parameters and
species. At final, each partner provide two data sets one
for histopathological data and the other for molecular data
(behavior and biomarkers).

Figure 1: Animal repartition according to partners, drugs
and species

Once aggregating all the molecular data and aggregating
all the histopathological dataHowever, a second challenge
arose due to the high dimensionality of the data. The
experimental data provided by partners for the same drug
did not share the same dimensions, and only a few features
overlapped between the two datasets. The small number
of animal studies, along with the class imbalance, is also a
factor to consider, i.e., the headcount of available animals
to carry out studies varies widely (from 16 to 96).

3 Heterogeneous incomplete multi-
view data workflow

We present in Figure 2 the main steps to combine the
histopathological and molecular data, the pre-processing
and the process to predict the drug. The overall workflow
can be described with three stages: data combination, data
preprocessing & imputation and data analysis & building
the drug classification model.

Figure 2: An overview of the overall Framework

3.1 Data aggregating

Each of the 5 partners provided two data sets, once for
the histopatological data and the second describing the
biomarkers along with the behavioral studies. Those sets
of data can be seen as two aligned view, i.e. one to one
relationship. By combining the two heterogeneous data
sets of each partner, a new fused dataset is generated. The
resulting data was highly dimensional (196 features).

3.2 Data Pre-processing & Data imputation

As data are heterogeneous from an experiment to another,
the sparsity of the data is very high. To keep coherence
and consistency, the dataset is split in subsets of animals
with the same species and drug treatment (not necessarily
from the same partner), then further cleaned. For each
of these subsets, early sacrificed animals and features
with more than half of missing values, constant values
are removed. The missing values for features with
less than half of missing values are filled by linear
interpolation. Additionally, the weight of the animals
appearing to be an important features of the impact of
neurotoxic component on animal health, it is important
that it is not influenced by the origin of the animals, their
species or the duration of experiment they take part in.
To ensure consistency two new features are created, the
weight evolution = (100*[final weight -
early weight]/early weight, in %) and the
relative weight = ([final weight - early
weight]/experiment duration).

3.3 Data Analysis, Correlation and gradual
pattern mining

In the initial exploratory phase, we are investigating the
potential correlation between the levels of biomarkers
and the grades of lesions observed on the nerves of the
animal model. The endpoint is to have a first view of
which biomarker could have an impact on the nervous
degeneration, and to what extent. This study is done
drug by drug, so as to identify possible drug-related
behaviour. Two correlation was performed: correlation
between a specific biomarker and histopathological lesions
and correlation between biomarkers.



Figure 3: Correlations between biomarkers and
histopathology data

This study is divided into two parts: calculating the absolute
value of the correlations then plotting the features with the
highest correlations to check their link, as a high correlation
level does not necessarily mean a strong link. The blanks
represent the pairs for which no data are available. To plot
the highest correlations. To plot the highest correlations,
we need to set a threshold of what we consider to be
“high”. A correlation of 0.8 is generally considered to be
the minimum to assess that the correlation is strong, and 0.5
to asses that the correlation is medium.

Figure 4: Biomarker correlation matrix

We can note that the biomarkers: pNF-H and NFL,
miR-338-CT and miR-124a-CT, miR-183-CT and miR-
124a-CT, UCHL-1 and GFAP, miR-183-CT and miR-338-
CT, miR-323-3p-FC and miR-323-3p-CT, miR-9*-CT and
miR-9*-CT, miR-190-CT and miR-190-FC are strongly
linked.
Gradual patterns mining Pattern mining is a major area
of data mining [5, 6, 7]. It consists in simple algorithms
aiming to discover frequent co-variations of features, by
counting for every set of features the direction of variation
of each one and the frequency at which this co-variation

appears. This process can be very time and resource
consuming, as according to the number of features and
individuals the number of sets can be very important.
Hence, the number of outputs is also very important.
To avoid such computational and representation problem,
we will here stick to the case where the sets of features are
a couple biomarker/histopathology, biomarker/behaviour,
dose/biomarker, dose/histopathology or dose/behaviour.
Then, we will gather information about the impact of
biomarkers on histopathology or the effect of the dose on
the other features, which is our endpoint.

Here is an example with the individuals treated with
Cisplatin drug.

Figure 5: Patterns identified for the Cisplatin individuals.
The symbol represents the direction of evolution, ‘+’ being
an increase and ‘-‘ being a decrease

Here, we can see for example that for 80% of the
animals, when the biomarker VEGF2 increase, there
is a corresponding increase of the histopathological
BB_failure_last, and for 40% of the animals, an increase
of VEGF2 goes along with a decrease of the relative
weight. Moreover, for the dose effect, 70% of the animals



experience have an increase of the behavioral markers cold
stimuli when the dose increase.

3.4 Drug Classification model

Classification aims to discriminate the data according to
a label and using a set of features for decision making.
Here the criterium to discriminate is the dose level, and
the features are described by behavioural observations,
histopathological grades and biomarkers alike. We build
a model based on a consensus of five classical Machine
Learning algorithms (Naïve Bayes [10], Decision Tree
[9], Random Forest[1], k Nearest Neighbour and Support
Vector Machine [8]), and perform a majority vote (i.e.
choosing the most represented class given by the 5 outputs)
to assign a class (dose) to every animal. Thus, we ensure
that a given algorithm does not favour a certain subset of
animals (a certain species or a certain drug).

Experiment Precision f1-score Accuracy
Acrylamide 0.95 0.95 0.89
Cisplatin 0.67 0.67 0.62
Doxorubicin 1 1 0.95
Nova1 1 1 1
Oxaliplatin 0.57 0.57 0.57
Paclitaxel 0.74 0.74 0.7
Vincristine 0.85 0.85 0.82
Mean 0.83 0.83 0.79

Table 1: Result of dose and drug classification model

Figure 6: Dose classification confusion for 3 examples of
datasets. The labels are the dose levels in mg/kg/dose

For each of this algorithms, we use the Leave-One-Out
(LOO) cross-validation method, that consists in using all
the individuals except one to train the model (training
sample) and use it to predict the class of the last one (test
sample). By doing so for every individual, we ensure that
the efficiency is not dependent on the characteristics of
a randomly chosen partition for training and testing, and
then, the results will not vary too wildly from one run of
the method to another. Efficiency is then calculated by
comparing the true classes of the individuals and those
predicted by the model. Table 1 presents the result of drug
with dose level classification.

4 Discussion
The following experimental features correlate the
most with the animal dosing of PNS toxicants,
regardless of the species (rat or mice) or the drug
(Acrylamide, Cisplatin, Doxorubicin, Nova1, Oxaliplatin,
Paclitaxel and Vincristine): (1) Biomarkers: pnF-
H, NF-L. (2) Histopathology: Other_Tissue_Histo,
PNS_Dorsal_Root_Ganglion, Cornea_Histo. (3)
Behavioral: paw_p_last, cold_plate_last, mechanical
stimuli, relative_weight, weight_evolution. Furthermore,
it was seen that biomarkers correlate with histopathology
findings in a dose dependent maner: the higher the dose
of the drugs, the better the correlation between biomarkers
and histopath findings.
Pulling together biomarker/histopathology correlations,
dose classification and gradual pattern mining can bring
valuable information on the relevance of behavioral,
biomarker and histopathology assays. Regarding
biomarkers, NF-L and pnF-H appear to be the most
valuable parameters to take into account consider, as they
are strongly correlated to most of the histopathology assays
they were measured with, discriminatory in some drug
dose classifications and show frequent gradient patterns
with most of the data they were measured with. Moreover,
they are present in most of the subsets. The TAU biomarker
seems interesting to a lesser extent. Similarly, from the
histopathology point of view Other_Tissue_Histo and
PNS_Dorsal_Root_Ganglion shows the most correlation
with biomarkers and the most discriminatory power
in relation to the dose. Sciatic and Saphenous Nerves
degradation are also strongly dependent of the dose
according to gradient patterns. Eventually, Decision Trees
show a significant importance of the behavioral assays on
the dose classification, especially the cold and mechanical
stimuli that are strongly present on gradient patterns with
the dose and biomarkers as well as weight features that are
often found instrumental in the very present in decision
trees.

5 Conclusion
To help identifying peripheral ,nervous system (PNS)
toxicity and build in silico predictive models, the most
influencing biomarkers, histopathological observations
and behavioral experiments were mined from a range
of experimental conditions gathered by the consortium
partners. The data set tackles different and challenging
issues that we tackle by a range of data mining and machine
learning techniques. However, different directions still to
carry on. Future works include incomplete multi-view
classification based non-negative matrix factorisation [13]
and domain adaptation [2].
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