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® Loss of 2 lives. 1000 homes and 20 businesses were destroyed
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® Thomas Fire destroyed 1063 structures and led to poor air quality

® |Intense rainfall as the fire was nearing containment produced a debris flow
e 23 lives and over 130 homes were lost
o
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Machine learning can shed light on climate change



new solutions this creates for nations, business and for everyday life, we must also
think about how to maximize the gains for society and our environment at large.”




Climate Informatics is based on the vision that
Machine learning can shed light on climate change

2008 Start research on Climate Informatics, with Gavin Schmidt, NASA

2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
2011 Launch International Workshop on Climate Informatics, New York Academy of Sciences

2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years / \
2013 “Climate Informatics” book chapter [M et al., SAM] 4\\@' |
2014  “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurlPS Tutorial]

2015 Launch Climate Informatics Hackathon, Paris and Boulder

2018 World Economic Forum recognizes Climate Informatics as key priority
2019 Climate Informatics Conference held at ENS, Paris

2022  First batch of articles published in Environmental Data Science, Cambridge University Press
2022 11% Conference on Climate Informatics and 8™ Hackathon, NOAA, Asheville, NC

2023 12% Conference on Climate Informatics and 9t Hackathon, April 19-21, Cambridge, UK



Machine Learning for Climate Change
and Environmental Sustainability

* Machine Learning for Climate Science
Understanding and Predicting Climate Change

 Machine Learning for Climate Adaptation
Extreme Weather and Cascading Hazards

* Machine Learning for Climate Mitigation

Accelerating the Green Transition



Our Climate Informatics research also addresses
open problems in Machine Learning

d Online learning with spatiotemporal non-stationarity
1 Prediction at multiple timescales simultaneously
J Anomaly detection with limited supervision

d Tracking highly-deformable patterns
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sediment
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15,000 years ago

e Past: Historical data

* Limited amounts
* Very heterogeneous

20,000 years ago

* Present: Observation data
e Large quantities recently
* High-dimensional
e Can be unlabeled, sparse

Horizontal Grid

e Past, Present, Future: Climate model simulations
* Massive, high-dimensional T,
» Encodes scientific domain knowledge, physics .
* Some information lost in discretizations sgoss
e Future predictions cannot be validated




Machine Learning for Understanding
and Predicting Climate Change

Online learning from non-stationary
spatiotemporal data to adaptively
combine climate model ensemble
forecasts

[Multiple papers 2009-2020, e.g., AAAI
2012, ALT 2020]

Solar energy

Upper-level winds

Causal information hubs in Pacific
ENSO region

[Saha et al., Climate Informatics 2019]

NASA / NCAR project to attribute and
forecast sea-level rise using climate
models and satellite altimetry

s [Sinha et al., AGU 2022, ICLR 2023
= - 'UCAR Science Education WOFkShOp]




Online learning with spatiotemporal
non-stationarity

Learning when the target concept can vary over time, o
and multiple other dimensions (e.g., latitude, longitude) 0 ]

We can exploit local structure in space and time

We can learn the level of non-stationarity in time and space
[McQuade and Monteleoni, AAAI 2012] extended [Monteleoni & Jaakkola,

NeurlIPS 2003; Monteleoni et al. SAM 2011] to multiple dimensions : ey | evbw | stbw
: . : : : : t-60d ®
This framework for online learning was open in machine learning
New “regret” framework: [Cesa-Bianchi, Cesari, & Monteleoni, ALT 2020] t-30d l ______________
o o . t i pEodmdods
Prediction at multiple timescales simultaneously l """"""""
Applications to both climate science, and financial volatility: t +30d
[McQuade and Monteleoni, Cl 2015; SIGMOD DSMM 2016] t + 60d 3¢

. = Prediction Initiated {:}= Prediction Evaluated



Machine Learning for Extreme Weather
and Cascading Hazards
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[Giffard-Roisin et al., Frontiers 2020]

Defining and detecting diverse, multivariate
extreme events with topic modeling

[Tang & Monteleoni, Climate Informatics 2014; IEEE CISE 2015]

Hurricane track prediction via fused CNNs
[Giffard-Roisin et al., Climate Informatics 2018; Frontiers 2020]

Forecasting Indian Summer Monsoon
precipitation extremes

[Saha et al. Climate Informatics 2019; 2020] with India
Meteorological Department (IMD)

Avalanche detection using CNN; VAE
[Sinha et al., Climate Informatics 2019; 2020] with Météo-France
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Avalanche detection /

o Limited in-situ ground-truth
/
measurements N
. Météo-France \os. (77, ey o
. Unlabeled SAR imagery o
. Monitoring French Alps in 2017-2018 /ﬁ"i s Reg
- Sentinel-1A and 1B satellites - R

- 4 features:
- Backscatter coefficients at present and previous time
- Topological features: Slope & Angle

METEO
FRANCE

[Sinha et al., Climate Informatics 2020]



Challenges for Machine Learning

e Severe class imbalance

Avalanches are rare events

o Ground-truth labeled data difficult to obtain
Terrain accessibility
Weather conditions
Danger of avalanches



Approach

@ Treat an avalanche as a rare event, or an anomaly
@ Train a variational autoencoder (VAE) on the negative examples

® Threshold the VAE’s reconstruction error to classify a new image

o Our idea: when labeled data is scarce, the VAE can instead be trained
without supervision!



What is an Auto-encoder?

* Train a neural network in an unsupervised way
e Use the unlabeled data both as input, and to evaluate the output

 After training, the bottleneck layer will be a compact representation of the

input distribution
—> Encoder ei-» Decoder —»
Reconstructed

Original
input

input

Compressed
representation



Autoencoder: The parameters of the encoder and
decoder networks are trained to make the output
approximate the input. After training on many input
examples, the parameters of the bottleneck layer form
a compact representation of the input distribution.

Output




Variational Autoencoder (VAE)

Learn a distribution over latent representations, instead of a single encoding

| J | ] | J

encode sampling decode



VAE for anomaly detect

negative examples only

Pre-processed SAR
- Slope +Angle

Sennnell

Label Images Only negatlve
samples

[Sinha et al., Climate Informatics 2020]

on is typically trained on
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Our approach: Train a VAE on unlabeled examples

mean vector
p sampled
|atent

64x64x4 / \ vector 64x64x4

—> YA —

— -

Reconstructed

All Images / econstructe
(unlabeled) N Input

1)

std dev vector

[Sinha et al., Climate Informatics 2020]



Tuning the hyperparameter for avalanche detection

mean vector
<Rdx sampled
iy / Il \ latent
vector
—>
Labeled / 4 '
Validation — > '
d / Reconstructed
Dataset 0 AW Input
(0}
Input
std dev vector

» | Reconstruction Error

%l A\/alﬁhe

avalanche
[Sinha et al., Climate Informatics 2020]



Avalanche detection on a test image

mean vector
H sampled
latent
064x04x4 / \ vector 64X64x4
> Z —
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[Sinha et al., Climate Informatics 2020]



Evaluation

One of the most avalanche-prone
mountain chains in the Alps data set

All Alps Haute Maurienne
Balanced Accuracy F1-score Balanced Accuracy F1-score
Baseline 0.58 0.05 0.58 0.12
Supervised - CNN 0.53 0.10 0.53 0.12
Semi-supervised - VAE 0.59 0.1 0.6 0.23
Unsupervised - VAE 0.69 0.14 0.68 0.26

« Held-out test set: 6,498 labeled examples
« Baseline method from avalanche-detection literature: Thresholding [Karbou et al., ISSW 2018]

« Supervised-learning benchmark method: Convolutional Neural Network (CNN) trained on
artificially balanced dataset [Sinha et al., Climate Informatics 2019]

[Sinha et al., Climate Informatics 2020]



Evaluation

Receiver operating characteristic curve (ROC)

[Sinha et al., Climate Informatics 2020]

ROC Analysis for Haute Maurienne region

1.0 1
0.8 1
8
Z 0.6
>
Y 04
E
Method AUCROC 0
. ' mmm Unsupervised-VAE
Super vised - CNN 70.7 mmm Semi-supervised-VAE
Semi-supervised - VAE 68.3 o m—Supervised-CNN
Unsupervised - VAE 75 0.0 0.2 04 06 0.8 10
False Positive Rate



ML contribution

e Provided a semi-supervised approach to detecting rare events when
labeled data is limited

Key idea: lean heavily on unsupervised learning and use labeled data ONLY for
hyperparameter tuning

e Can be viewed as a form of virtual sensor

[Sinha et al., Climate Informatics 2020]



ML for the
Green Transition

Week-ahead solar irradiance

forecasting via deep sequence
learning

[Sinha et al., Cl 2022] with NREL

ML to downscale climate model
data for renewable energy
planning in U.S. and India

Climate Change Al / Future Earth project
with NREL, IIT-Roorkee

[Harilal et al., NeurlPS workshop 2022]




ClimAlign: Unsupervised, generative downscaling
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General downscaling technique via domain alignment with normalizing flows
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurlPS 2018]

* Unsupervised: do not need paired maps at low and high resolution

* Generative: can sample from posterior over latent representation OR sample
conditioned on a low (or high!) resolution map

* Intepretable, e.g., via interpolation

[Groenke, et al., Climate Informatics 2020]
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Normalizing Flows IG: x :" ] P
"
[Rezende & Mohamed, ICML 2015] - “ - -\ ’ ~n . .‘ -

Can be viewed as extension of VAE beyond Gaussian assumption on latent space

Learn a series of invertible transformations, {f;}, from a simple prior on latent
space, Z, to allow for more informative distributions on the latent space:

2k = fro fk—10---0 fi(20)

cex I




Our Climate Informatics research also addresses
open problems in Machine Learning

d Online learning with spatiotemporal non-stationarity
1 Prediction at multiple timescales simultaneously
J Anomaly detection with limited supervision

d Tracking highly-deformable patterns



Summary and Outlook

Data limitations
* Limited labeled data: unsupervised learning, dimensionality reduction
* Class imbalance: e.g., extreme events are rare by definition!
* Data is limited along the time dimension. Can we substitute data diversity and
granularity over space?
Scale resolution challenges
* Downscaling spatiotemporal data fields
* Climate model parameterization problems

Non-stationarity
* Climate change means we cannot assume i.i.d. data!
ML models need to adapt over time, and space

Interpretability
* Evaluation of generative models is an active research area of core ML



Long-term Inspirations

Cascading Hazards
. Goal: move beyond individual weather extremes, to how they couple
. With massive wildfires in France and the U.S., there is extreme urgency!

Climate Justice
. Our research should always help increase climate equity

. Ultimately, we should strive for approaches to help UNDO the legacy of
climate IN-justice



Thank youl!

And many thanks to:
Arindam Banerjee, University of Illinois Urbana-Champaign
Nicolo Cesa-Bianchi, Universita degli Studi di Milano
Tommaso Cesari, Toulouse School of Economics
Guillaume Charpiat, INRIA-Saclay
Cécile Coléou, Météo-France & CNRS
( . B\ Michael Dechartre, Irstea, Université Grenoble Alpes
) ol ) y w  NWEN/ITAN Nicolas Eckert, Irstea, Université Grenoble Alpes
S8 Climate and Machine Learning Boulder (CLIMB) ko Sophie Giffard-Roisin, IRD Grenoble
—E— —— . Brian Groenke, Alfred Wegener Institute, Potsdam
' Tommi Jaakkola, MIT
Anna Karas, Météo-France & CNRS
Fatima Karbou, Météo-France & CNRS
Balazs Kégl, Huawei Research & CNRS
Luke Madaus, Jupiter Intelligence
Scott McQuade, Amazon
Ravi S. Nanjundiah, Indian Institute of Tropical Meteorology
Moumita Saha, Philips Research India
Gavin A. Schmidt, NASA Senior Advisor on Climate
Saumya Sinha, University of Colorado Boulder
Cheng Tang, Amazon
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Research. Innovation. Sustainability.




ARCHES:

Al research for climate change
& environmental sustainability

Join our team at INRIA Paris!
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o ENVIRONMENTAL
DATA SCIENCE

An interdisciplinary, open access journal dedicated to the potential of
artificial intelligence and data science to enhance our understanding of
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including:
Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry &
physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)

Sustainability and renewable energy (the interaction between human processes and ecosystems, including
resource management, transportation, land use, agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)

Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)

Environmental policy and economics
Q@envdatascience

OPEN aACCESS

www.cambridge.org/eds
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