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December 2021: Boulder County, Colorado

● Snow drought condi=ons through fall and winter 2021 created dry land-cover

● 80-100 mph winds, combined with igni=on, launched an uncontrollable “fire storm”

● Loss of 2 lives. 1000 homes and 20 businesses were destroyed, and more damaged
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January 2018: Montecito, Santa Barbara County

● Thomas Fire destroyed 1063 structures and led to poor air quality

● Intense rainfall as the fire was nearing containment produced a debris flow

● 23 lives and over 130 homes were lost

● Damage to critical transportation and water resource infrastructure
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Machine learning can shed light on climate change
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“The AI opportunity for the Earth is significant. Today’s AI explosion will see us add AI 
to more and more things every year.... As we think about the gains, efficiencies and 
new soluCons this creates for naCons, business and for everyday life, we must also 
think about how to maximize the gains for society and our environment at large.”

– The World Economic Forum: Harnessing ArCficial Intelligence for the Earth. 2018 
    
   
  



Climate Informatics is based on the vision that
Machine learning can shed light on climate change

2008 Start research on Climate Informa5cs, with Gavin Schmidt, NASA
 2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Applica5on Paper Award]
 2011 Launch Interna5onal Workshop on Climate Informa5cs, New York Academy of Sciences
 2012 Climate Informa5cs Workshop held at NCAR, Boulder, for next 7 years
 2013 “Climate Informa5cs” book chapter [M et al., SAM]
  2014 “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurIPS Tutorial]
 2015 Launch Climate Informa5cs Hackathon, Paris and Boulder
 2018 World Economic Forum recognizes Climate Informa5cs as key priority
 2019 Climate Informa5cs Conference held at ENS, Paris
 2022 First batch of ar5cles published in Environmental Data Science, Cambridge University Press 
 2022     11th Conference on Climate Informa5cs and 8th Hackathon, NOAA, Asheville, NC
 2023 12th Conference on Climate Informa5cs and 9th Hackathon, April 19-21, Cambridge, UK



Machine Learning for Climate Change 
and Environmental Sustainability

• Machine Learning for Climate Science

   Understanding and Predic7ng Climate Change

• Machine Learning for Climate Adapta7on 

   Extreme Weather and Cascading Hazards 

• Machine Learning for Climate Mi7ga7on 

   Accelera7ng the Green Transi7on



Our Climate Informa<cs research also addresses 
open problems in Machine Learning

q Online learning with spatiotemporal non-stationarity

q Prediction at multiple timescales simultaneously

q Anomaly detection with limited supervision 

q Tracking highly-deformable patterns



Climate data types 

• Past: Historical data
• Limited amounts
• Very heterogeneous

• Present: Observa3on data
• Large quan55es recently
• High-dimensional
• Can be unlabeled, sparse

• Past, Present, Future: Climate model simula3ons
• Massive, high-dimensional
• Encodes scien5fic domain knowledge, physics
• Some informa5on lost in discre5za5ons
• Future predic5ons cannot be validated



Online learning from non-stationary 
spatiotemporal data to adaptively 
combine climate model ensemble 
forecasts
[Multiple papers 2009-2020, e.g., AAAI 
2012, ALT 2020]

Causal information hubs in Pacific 
ENSO region
[Saha et al., Climate Informatics 2019]

NASA / NCAR project to attribute and 
forecast sea-level rise using climate 
models and satellite altimetry
[Sinha et al., AGU 2022, ICLR 2023 
workshop]

Machine Learning for Understanding 
and Predic3ng Climate Change

UCAR Science Educa8on



Online learning with spa<otemporal 
non-sta<onarity
Learning when the target concept can vary over 1me, 
and mul1ple other dimensions (e.g., la1tude, longitude)

We can exploit local structure in space and 1me

We can learn the level of non-sta1onarity in 1me and space
 [McQuade and Monteleoni, AAAI 2012] extended [Monteleoni & Jaakkola, 
 NeurIPS 2003; Monteleoni et al. SAM 2011] to mulBple dimensions

This framework for online learning was open in machine learning
 New “regret” framework: [Cesa-Bianchi, Cesari, & Monteleoni, ALT 2020]

      Predic1on at mul1ple 1mescales simultaneously 
 ApplicaBons to both climate science, and financial volaBlity:
 [McQuade and Monteleoni, CI 2015; SIGMOD DSMM 2016]



Machine Learning for Extreme Weather 
and Cascading Hazards 

Defining and detec,ng diverse, mul,variate 
extreme events with topic modeling
[Tang & Monteleoni, Climate InformaBcs 2014; IEEE CISE 2015]

Hurricane track predic,on via fused CNNs 
[Giffard-Roisin et al., Climate InformaBcs 2018; FronBers 2020]

Forecas,ng Indian Summer Monsoon 
precipita,on extremes
[Saha et al. Climate InformaBcs 2019; 2020] with India 
Meteorological Department (IMD)

Avalanche detec,on using CNN; VAE
[Sinha et al., Climate InformaBcs 2019; 2020] with Météo-France

[Giffard-Roisin et al., Fron8ers 2020]



Avalanche detection

● Limited in-situ ground-truth 
measurements 
• Météo-France

● Unlabeled SAR imagery
• Monitoring French Alps in 2017-2018
• Sen8nel-1A and 1B satellites
• 4 features:

• Backscader coefficients at present and previous Bme
• Topological features: Slope & Angle 

[Sinha et al., Climate Informa8cs 2020]



Challenges for Machine Learning

● Severe class imbalance

• Avalanches are rare events

● Ground-truth labeled data difficult to obtain
• Terrain accessibility
• Weather condi8ons 
• Danger of avalanches



Approach

① Treat an avalanche as a rare event, or an anomaly

② Train a varia7onal autoencoder (VAE) on the nega7ve examples

③ Threshold the VAE’s reconstruc7on error to classify a new image

● Our idea: when labeled data is scarce, the VAE can instead be trained
without supervision!



What is an Auto-encoder?

• Train a neural network in an unsupervised way
• Use the unlabeled data both as input, and to evaluate the output

• After training, the bottleneck layer will be a compact representation of the 
input distribution



Encoder Decoder

Input Output

Latent representation

Autoencoder: The parameters of the encoder and 
decoder networks are trained to make the output 
approximate the input. Afer training on many input 
examples, the parameters of the bodleneck layer form 
a compact representaBon of the input distribuBon.



Varia<onal Autoencoder (VAE)
Learn a distribution over latent representations, instead of a single encoding



VAE for anomaly detec<on is typically trained on 
nega<ve examples only

[Sinha et al., Climate Informa8cs 2020]



Our approach: Train a VAE on unlabeled examples

[Sinha et al., Climate Informa8cs 2020]



Tuning the hyperparameter for avalanche detection

[Sinha et al., Climate Informa8cs 2020]



[Sinha et al., Climate Informa8cs 2020]

Avalanche detection on a test image



Evalua<on

● Held-out test set: 6,498 labeled examples

● Baseline method from avalanche-detecBon literature: Thresholding [Karbou et al., ISSW 2018] 

● Supervised-learning benchmark method: ConvoluBonal Neural Network (CNN) trained on 
arBficially balanced dataset [Sinha et al., Climate InformaBcs 2019]

One of the most avalanche-prone 
mountain chains in the Alps data set

[Sinha et al., Climate Informa8cs 2020]



ROC Analysis for Haute Maurienne region

Evalua<on

[Sinha et al., Climate Informa8cs 2020]



ML contribution
 
● Provided a semi-supervised approach to detec7ng rare events when 

labeled data is limited

• Key idea: lean heavily on unsupervised learning and use labeled data ONLY for 
hyperparameter tuning

● Can be viewed as a form of virtual sensor

26
[Sinha et al., Climate Informa8cs 2020]



ML for the 
Green Transi3on

Week-ahead solar irradiance 
forecasting via deep sequence 
learning 
[Sinha et al., CI 2022] with NREL

ML to downscale climate model 
data for renewable energy 
planning in U.S. and India 
Climate Change AI / Future Earth project 
with NREL, IIT-Roorkee
[Harilal et al., NeurIPS workshop 2022]



ClimAlign: Unsupervised, genera<ve downscaling

General downscaling technique via domain alignment with normalizing flows 
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurIPS 2018]

• Unsupervised: do not need paired maps at low and high resolu8on
• Genera-ve: can sample from posterior over latent representa8on OR sample 

condi8oned on a low (or high!) resolu8on map
• Intepretable, e.g., via interpola8on

[Groenke, et al., Climate Informatics 2020]



Normalizing Flows

Can be viewed as extension of VAE beyond Gaussian assump7on on latent space

Learn a series of inver7ble transforma7ons, {fi}, from a simple prior on latent 
space, Z, to allow for more informa7ve distribu7ons on the latent space:

zk = fk � fk�1 � · · · � f1(z0)

<latexit sha1_base64="orQaNJWrcawR+b1pghkwRGxPsxs=">AAACHXicbVBNS8MwGE7n15xfVY9egkOYB0crE3cRBl48TnAfsJaSpukWlqYlSYWt7I948a948aCIBy/ivzHbiujmAwlPnud9efM+fsKoVJb1ZRRWVtfWN4qbpa3tnd09c/+gLeNUYNLCMYtF10eSMMpJS1HFSDcRBEU+Ix1/eD31O/dESBrzOzVKiBuhPqchxUhpyTNrY28Ir2CobwdTgTXLhmf2JH85OIiV/LFsWBl71qlnlq2qNQNcJnZOyiBH0zM/nCDGaUS4wgxJ2bOtRLkZEopiRiYlJ5UkQXiI+qSnKUcRkW42224CT7QSwDAW+nAFZ+rvjgxFUo4iX1dGSA3kojcV//N6qQrrbkZ5kirC8XxQmDKoYjiNCgZUEKzYSBOEBdV/hXiABMJKB1rSIdiLKy+T9nnVrlUvbmvlRj2PowiOwDGoABtcgga4AU3QAhg8gCfwAl6NR+PZeDPe56UFI+85BH9gfH4DtcqfyA==</latexit>

[Rezende & Mohamed, ICML 2015]



Our Climate Informa<cs research also addresses 
open problems in Machine Learning

q Online learning with spatiotemporal non-stationarity

q Prediction at multiple timescales simultaneously

q Anomaly detection with limited supervision 

q Tracking highly-deformable patterns



Summary and Outlook
Data limita,ons
• Limited labeled data: unsupervised learning, dimensionality reduc8on
• Class imbalance: e.g., extreme events are rare by defini8on!
• Data is limited along the 8me dimension. Can we subs8tute data diversity and 

granularity over space? 

Scale resolu,on challenges 
• Downscaling spa8otemporal data fields
• Climate model parameteriza8on problems

Non-sta,onarity
• Climate change means we cannot assume i.i.d. data!
• ML models need to adapt over 8me, and space

Interpretability
• Evalua8on of genera8ve models is an ac8ve research area of core ML



Long-term Inspirations

Cascading Hazards
•  Goal: move beyond individual weather extremes, to how they couple

•  With massive wildfires in France and the U.S., there is extreme urgency!

Climate Jus,ce
•  Our research should always help increase climate equity

•  Ul7mately, we should strive for approaches to help UNDO the legacy of 
climate IN-jus7ce
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Thank you!

Climate and Machine Learning Boulder (CLIMB)



ARCHES:
AI research for climate change 
& environmental sustainability 

Join our team at INRIA Paris!



@envdatascience

An interdisciplinary, open access journal dedicated to the poten8al of 
ar8ficial intelligence and data science to enhance our understanding of 
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including: 
Machine Learning; Ar8ficial Intelligence; Sta8s8cs; Data Mining; Computer Vision; Econometrics

Environmental scope, includes: 
Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry & 
physics, paleoclimatology)
Climate change (including carbon cycle, transporta8on, energy, and policy)
Sustainability and renewable energy (the interac8on between human processes and ecosystems, including 
resource management, transporta8on, land use, agriculture and food)
Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecas8ng, mi8ga8on, and adapta8on, for environmental extremes and hazards)
Environmental policy and economics

www.cambridge.org/eds



Environmental Data Science 
Innovation & Inclusion Lab 

NSF’s newest data synthesis center, 
hosted by the University of Colorado Boulder & CIRES, 

with key partners CyVerse & the University of Oslo

A national accelerator linking data, discovery, & decisions


